\(4A=4+4^2+4^3+...+4^{100}\)
\(\Rightarrow3A=4A-A=4^{100}-1\Rightarrow A=\frac{4^{100}-1}{3}\)
Do đó \(\frac{A}{b}=\frac{\frac{4^{100}-1}{3}}{4^{101}}=\frac{4^{100}-1}{4^{101}.3}< \frac{4^{101}}{4^{101}.3}=\frac{1}{3}\)
Ta có : \(A=1+4+4^2+4^3+...+4^{99}\)
\(4A=4+4^2+4^3+4^4+...+4^{100}\)
\(4A-A=4^{100}-1\)
\(3A=4^{100}-1\)
\(A=4^{100}-1\div3\)
ta thấy : \(4^{100}-1\div3< 4^{101}\)
\(\Rightarrow A< B\)