Đề bài yêu cầu : Chứng minh rằng cả ba số a,b,c đều là số dương.
Giải như sau :
Vì abc>0 nên trong ba số a,b,c phải có ít nhất một số dương. (Giả sử ngược lại cả 3 số đều âm => abc<0 => vô lí)
Không mất tính tổng quát, ta giả sử a>0 , mà abc>0 => bc>0
Nếu b<0 , c<0 => b+c<0
Từ a+b+c>0 => b+c>-a => \(\left(b+c\right)^2< -a\left(b+c\right)\)
=> \(b^2+2bc+c^2< -ab-ac\)
=> \(ab+bc+ca< -b^2-bc-c^2\)
=> \(ab+bc+ca< 0\) (vô lí vì trái với giả thiết)
Vậy phải có b>0 và c>0. Suy ra cả ba số a,b,c đều dương.