Rút gọn biểu thức sau :
A =\(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
a/C/m A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b/ Tìm cá giá trị của x để 2P = 2\(\sqrt{x}+5\)
Cho biểu thức P=\(\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}+\dfrac{4\sqrt{a}-4}{4-a}\)
a,Rút gọn P
b,Tính giá trị của biểu thức P khi \(a=\dfrac{1}{9}\)
c,Tìm giá trị của a để P = 2
Tìm tập xác định và rút gọn \(A=\dfrac{3\left(\sqrt{ab}-b\right)}{a-b}+\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^3+2a\sqrt{a}+b\sqrt{b}}{a\sqrt{a}+b\sqrt{b}}\)
Cho a,b,c >0 .CMR:
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{a}{c+b}}+\sqrt{\dfrac{c}{a+b}}\)
Cho a,b,c >0 .CMR:
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}\)
a) Giải \(\left\{{}\begin{matrix}x\sqrt{y}+y\sqrt{x}=30\\x\sqrt{x}+y\sqrt{y}=35\end{matrix}\right.\)
b) Cho 0 < a < b < c < d. Chứng minh \(\left(b+c\right)\left(\dfrac{1}{b}+\dfrac{1}{c}\right)< \dfrac{\left(a+d\right)^2}{ad}\)
\(A=\left(\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{2-\sqrt{x}}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\right):\left(2-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a) Rút gọn A
b) Cho |x| = 3. Tính A
\(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}+\dfrac{\sqrt{x}-5}{\sqrt{x}+3}\right)\)
\(B=\left(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{x+2}\right):\dfrac{x^2-3x}{2x^2-x^3}\)
a) Rút gọn A & B
b) Tìm x để B > 0
c) Tính B khi \(\left|1-x\right|=0\)
a) Tính \(M=\sqrt{a^2+4ab^2+4b^4}-\sqrt{4a^2-12ab^2+9b^4}\)
Với \(a=\sqrt{2};b=1\)
b) Tính \(\dfrac{\sqrt{x}+\sqrt{3}}{3-x}.\left(\dfrac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\)