\(\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{CB}=\overrightarrow{CB}+\overrightarrow{AC}\)
\(\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{CB}=\overrightarrow{CB}+\overrightarrow{AC}\)
Cho tam giác ABC , I nằm trên AC sao cho CI = \(\frac{1}{4}\) CA. J thỏa mãn \(\overrightarrow{BC}=\frac{1}{2}\overrightarrow{AC}-\frac{2}{3}\overrightarrow{AB}\). chứng minh
a. \(\overrightarrow{BC}=\frac{3}{4}\overrightarrow{AC}-\overrightarrow{AB}\)
b, B , I ,J thẳng hàng
Cho tam giác ABC có AB = c BC = a AC= b và trọng tâm G. D,E,F là hình chiếu của G lên BC, CA, AB. Chứng minh rằng : a^2* vectơ GD + b^2* vectơ GE + c^2* vectơ GF = vectơ 0
Cho 6 điểm A, B, C, D, E, F. chứng minh các đẳng thức vecto sau:
a) \(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AC}-\overrightarrow{BD}\)
b) \(\overrightarrow{AB}+\overrightarrow{DC}+\overrightarrow{BD}+\overrightarrow{CA}=\overrightarrow{0}\)
c) \(\overrightarrow{AC}+\overrightarrow{DE}-\overrightarrow{DC}-\overrightarrow{CE}+\overrightarrow{CB}=\overrightarrow{AB}\)
d) \(\overrightarrow{AB}+\overrightarrow{DE}+\overrightarrow{CF}=\overrightarrow{AC}+\overrightarrow{DF}+\overrightarrow{CB}+\overrightarrow{CE}\)
HELP ME!!
giúp mik ba bài này với ^-^
1. Cho hình chữ nhật ABCD có AB = 3a , AD = 4a
a) Tính / vec tơ AD - vec tơ AB / b) Dựng vec tơ u = vec tơ CA - vec tơ AB . Tính / vec tơ u /
2. Cho △ABC đều cạnh a . Gọi I là trung điểm BC
a) Tính / vec tơ AB - vec tơ AC / b) Tính / vec tơ BA - vec tơ BI /
3. Cho △ABC vuông tại A . Biết AB = 6a , AC = 8a . Tính / vec tơ AB - vec tơ AC /
1.Cho △ABC. Gọi M;N lần lượt là trung điểm AB và BC. Đặt\(\overrightarrow{CM}=\overrightarrow{a};\overrightarrow{AN}=\overrightarrow{b}\).Biểu diễn các véc tơ \(\overrightarrow{AB};\overrightarrow{BC};\overrightarrow{CA}\) theo \(\overrightarrow{a};\overrightarrow{b}\)
2.Cho △ABC.Trên đường thẳng AB lấy điểm M sao cho \(\overrightarrow{MA}=2\overrightarrow{MB}\).Hãy phân tích véc tơ \(\overrightarrow{CM}\)theo hai véc tơ \(\overrightarrow{u}=\overrightarrow{CA};\overrightarrow{v}=\overrightarrow{CB}\)
3. Cho △ABC. Gọi M;N;P lần lượt trên cách cạnh AB;BC;CA của △ABC sao cho MB =2MA;NC=2NB;PA=2PC.CMR : \(\overrightarrow{AN}+\overrightarrow{BP}+\overrightarrow{CM}=\overrightarrow{0}\)
Cho tam giác ABC vuông tại A có AB=4, AC =3. Tính độ dài các vecto
Vecto BC - vecto CA
Cho tam giác ABC đều có độ dài cạnh bằng 3. Trên các cạnh BC, CA lần lượt các điểm N, M sao cho BN=1, CM=2.
a. Phân tích vecto AN theo hai vecto AB và AC
b. Trên cạnh AB lấy điểm P, P khác A, P khác B, sao cho AN vuông góc với PM. Tính tỉ số AP/AB
cho tam giác ABC , lấy M,N,P lần lượt trên các đoạn AB,BC,AC sao cho AM= \(\frac{1}{3}\)AB, BN= \(\frac{1}{3}\) BC, CP= \(\frac{1}{3}\)CA. CMR: \(\overrightarrow{AN}+\overrightarrow{BP}+\overrightarrow{CM}=0\)
cho tam giác A B C vuông tại A AB=3cm, AC=4cm. gọi M,N,K lần lượt là trung điểm của AC,BC,AB Tính |vectoAK+vectoAM|