Ta có: \(2a>8\Leftrightarrow a>4\) (nhân cả hai vế với \(\dfrac{1}{2}\))
Ngược lại:
Ta có: \(a>4\Leftrightarrow2a>8\) (nhân cả hai vế với 2)
\(\xrightarrow[]{}\) điều này đúng.
Ta có: \(2a>8\Leftrightarrow a>4\) (nhân cả hai vế với \(\dfrac{1}{2}\))
Ngược lại:
Ta có: \(a>4\Leftrightarrow2a>8\) (nhân cả hai vế với 2)
\(\xrightarrow[]{}\) điều này đúng.
Cho \(a< b\), chứng tỏ :
a) \(2a-3< 2b-3\)
b) \(2a-3< 2b+5\)
1. Chứng minh BĐT
a, a2+b2+c2>hoặc bằng ab+ac+bc
b, a2+b2+c2 > hoặc bằng a.(b+c)
2. Cho 2 số x,y thỏa mãn điều kiện x+y=2
Chứng minh: x4+y4 > hhoặc bằng 2
1. Cho a < b, chứng tỏ rằng:
a). \(3-6a>1-6b\)
b). \(7\left(a-2\right)< 7\left(b-2\right)\)
c). \(\dfrac{1-2a}{3}>\dfrac{1-2b}{3}\)
2. So sánh a và b nếu:
a). \(a+23< b+23\)
b). \(-12a>-12b\)
c). \(5a-6\ge5b-6\)
d). \(\dfrac{-2a+3}{5}\le\dfrac{-2b+3}{5}\)
A) cho a>b,b>0.Chứng minh a/b + b/a ≥2
B) cho a<b.Chứng minh; -2a - 3 > -2b - 3
C) chứng minh: x2 + 2y2 + 2xy + 6y +9 > 0
D) cho a + 3 > b + 3.Chứng minh: -5a + 1 < -5b +1
cho a>b hãy so sánh:
a) 2a+4 và 2b +4 b) 7-2a và 7-2b c) 5a+3 và 5b-3 d) 2a+5 và 2b-1Cho 2 số x,y thỏa mãn điều kiện x+y=2. Cminh x^4+y^4 >= 2
Cho m<n .Chứng tỏ
a) 2m+1<2n+1
b) 4(m-2)<4(n-2)
c) 3-6m>3-6n
d) 4m+1<4n+5
Cho x,y,z >0 thỏa mãn điều kiện x+y+z <=6
Chứng minh :
1/x + 1/y + 1/z >= 3/2
Cho a, b, c là các số dương thỏa mãn \(a< b,c< d\)
Chứng tỏ \(ac< bd\) ?