\(A=\left[-3;3\right]\) ; \(B=(-\infty;-1]\cup[1;+\infty)\)
\(\Rightarrow A\cap B=\left[-3;-1\right]\cup\left[-1;3\right]\)
\(A=\left[-3;3\right]\) ; \(B=(-\infty;-1]\cup[1;+\infty)\)
\(\Rightarrow A\cap B=\left[-3;-1\right]\cup\left[-1;3\right]\)
A =\(\left\{x\in N\backslash\left(2x-x^2\right)\left(2x^2-3x-2\right)=0\right\}\)
B =\(\left\{n\in N^+\backslash3x< n< 30\right\}\)
Xét A
\(\left(2x-x^2\right)\left(2x^2-3x-2\right)=0\)
=> \(\left[{}\begin{matrix}\left(2x-x^2\right)=0=>x=2;x=0\\\\\left(2x^2-3x-2\right)=0=>x=2;x=-\frac{1}{2}\end{matrix}\right.\)
Vì \(x\in N\) => \(A=\left\{2\right\}\)
Xét B
\(3x< n^2< 30\)
<=> \(6< n^2< 30\)
<=> \(\sqrt{6}< n< \sqrt{30}\)
=>\(\left[\sqrt{6};\sqrt{30}\right]\)
Vì \(B\in N^+\) => \(B=\left[3;5\right]\)
\(A\cap B=\varnothing\)
cho tập A = \(\left\{\frac{1}{6};\frac{1}{12};\frac{1}{30};...;\frac{1}{420}\right\}\) ta có thể viết lại tập A là?
A. A=\(\left\{\frac{1}{x\left(x-2\right)}|x\in Z;1\le x\le19\right\}\)
B. A= \(\left\{\frac{1}{x\left(x+1\right)}|x\in N;2\le x\le22\right\}\)
C. A=\(\left\{\frac{1}{x\left(x+2\right)}|x\in Z;1\le x\le20\right\}\)
D. A=\(\left\{\frac{1}{x\left(x+1\right)}|x\in N;2\le x\le20\right\}\)
bạn nào giúp mình chọn đáp án đúng và giải thích làm như nào hộ mk vs ạ. mình cảm ơn
Cho hai đa thức f(x) và g(x). Xét các tập hợp A={x∈R, f(x)=0}, B={x∈R,g(x)=0}, C={x∈R,\(\dfrac{f\left(x\right)}{g\left(x\right)}=0\) } . Mệnh đề nào đúng và giải thích:
A. A hợp B
B. A giao B
C. A/B
D. B/A
1. Mệnh đề nào sau đây là mệnh đề đúng? Giải thích:
a) 5 > 3 hay 5 < 3
b) \(\forall x\in R,x^2-x=1>0\)
c) \(\forall x\in R,x>3\Rightarrow x^2>9\)
2. Điền từ vào chỗ trống " và " hay " hoặc " để được mệnh đề đúng
\(\pi< 4\) ........... \(\pi>5\)
3. Cho mệnh đề chứa biến \(P\left(x\right)\) với \(x\in R\) . Tìm x để \(P\left(x\right)\) là mệnh đề đúng:
a) \(P\left(x\right):x^2+x+1>0\)
b) \(P\left(x\right):\sqrt{x}\ge x\)
Cho 3 tập hợp \(A=\left(-3;-1\right)\cup\left(1;2\right),B=\left(m;+\infty\right),C=\left(-\infty;2m\right)\)
Tìm m để \(A\cap B\cap C\ne\phi\)
cho tập A= \(\left\{4;6;8\right\}\) ; B=\(\left\{6;8;10\right\}\); C=\(\left\{6;8;12\right\}\)khẳng định nào đúng
A. \(A\cup\left(B\cap C\right)=\left(A\cup B\right)\cap C\)
B. \(A\cup\left(B\cap C\right)=\left(A\cup B\right)\cap\left(A\cup C\right)\)
C. \(\left(A\cup B\right)\cap C=\left(A\cup B\right)\cap\left(A\cup C\right)\)
D. \(\left(A\cap B\right)\cup C=\left(A\cup B\right)\cap C\)
Ai có thể giải thích đc thì giải thích giúp mk vs nhé. cảm ơn ạ
Cho P(x), Q(x) là hai mệnh đề chứa biến. Chứng minh rằng mệnh đề \("\exists x\in X,P_{\left(x\right)}\curlywedge Q\left(x\right)"\)
không nhất thiết tương đương với mệnh đề \("\left(\exists x\in X,P\left(x\right)\right)\curlywedge\left(\exists x\in X,Q\left(x\right)\right)"\)
Chứng minh bằng qui nạp
a/ với 2 \(\le n\in Z\). CMR: 2< \(\left(1+\dfrac{1}{n}\right)^n< 3\)
b/ Với x, y > 0 và n \(\in N\)*. CMR : \(\left(x^2+y^2\right)^n\ge2^nx^ny^n+\left(x^n-y^n\right)^2\)
c/ Cho a+b = 2018. CMR : \(a^n+b^n\ge2.1009^n\). với mọi n\(\in\)N*
cho hàm số \(y=f\left(x\right)=-x^2+4x+5\)
tìm m để
\(f\left(\left|x\right|\right)-\left(m+1\right)\left|f\left(x\right)\right|+m=0\) có 8 nghiệm phân biệt