cho x,y là 2 số thực ≠0 thỏa mãn 2x2+ y2/4 +1/x2=4
A=2018+xy
Cho 2 số thực x,y thỏa mãn \(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\) . Tìm GTLN của tích xy.
Cho số thực x và y thỏa mãn \(x\ne y;x\ne0;y\ne0\)
CMR: \(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)
Cho 2 số thực x, y thỏa mãn: x^2.+4y^2=20. Tìm GTLN của biểu thức: A=|x+y|
Cho 2 số thực x, y thỏa mãn: \(x^2+4y^2=20\). Tìm GTLN của biểu thức: A=\(\left|x+y\right|\)
Cho x và y là hai số dương thỏa mãn: x+y=2. Tìm GTNN của biểu thức: Q=\(\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}\)
Cho số thực x;y thỏa mãn: x^2 + xy + 2y^2 = 1 Tìm min và max của A = x - 2y + 3
Cho a,b,x,y,z là các số khác 0 thỏa mãn: \(\dfrac{x^2-yz}{a}=\dfrac{y^2-zx}{b}=\dfrac{z^2-xy}{c}\ne0\). Tìm x, y, z biết x+y+z=2010 và \(a^2-bc=0\)