Lời giải :
Ta thấy:
\(\left\{\begin{matrix} m^2+2\vdots n\\ n^2+2\vdots m\end{matrix}\right.\) \(\Rightarrow (m^2+2)(n^2+2)\vdots mn\)
\(\Leftrightarrow m^2n^2+2m^2+2n^2+4\vdots mn\)
\(\Rightarrow 2m^2+2n^2+4\vdots mn\)
\(\Leftrightarrow 2(m^2+n^2+2)\vdots mn\)
Vì $m,n$ đều lẻ nên \((2,mn)=1\Rightarrow m^2+n^2+2\vdots mn(*)\)
Mặt khác:
Một số chính phương thì chia $4$ dư $0,1$. Vì $m,n$ lẻ nên \(m^2\equiv n^2\equiv 1\pmod 4\)
\(\Rightarrow m^2+n^2+2\equiv 4\equiv 0\pmod 4\) hay \(m^2+n^2+2\vdots 4(**)\)
Từ \((*);(**)\) mà \((4,mn)=1\) nên \(m^2+n^2+2\vdots 4mn\)
Ta có đpcm.
Ta thấy:
⎧⎩⎨m2+2⋮nn2+2⋮m{m2+2⋮nn2+2⋮m ⇒(m2+2)(n2+2)⋮mn⇒(m2+2)(n2+2)⋮mn
⇔m2n2+2m2+2n2+4⋮mn⇔m2n2+2m2+2n2+4⋮mn
⇒2m2+2n2+4⋮mn⇒2m2+2n2+4⋮mn
⇔2(m2+n2+2)⋮mn⇔2(m2+n2+2)⋮mn
Vì m,nm,n đều lẻ nên (2,mn)=1⇒m2+n2+2⋮mn(∗)(2,mn)=1⇒m2+n2+2⋮mn(∗)
Mặt khác:
Một số chính phương thì chia 44 dư 0,10,1. Vì m,nm,n lẻ nên m2≡n2≡1(mod4)m2≡n2≡1(mod4)
⇒m2+n2+2≡4≡0(mod4)⇒m2+n2+2≡4≡0(mod4) hay m2+n2+2⋮4(∗∗)m2+n2+2⋮4(∗∗)
Từ (∗);(∗∗)(∗);(∗∗) mà (4,mn)=1(4,mn)=1 nên m2+n2+2⋮4mnm2+n2+2⋮4mn
đúng thì tick nhé