a\(^2\)>= 2 , tim gia tri nho nhat cua \(a^2+\dfrac{1}{a^2}\)
cho a,b,c lon hon bang 0 va ab+bc+ca lon hon bang 3.c/m a4/b+3c +b4/c+3a +c4/a+3b
Cho a,b,c >0 và a+b+c<hoặc =1
cmr : \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)>hoặc = 9
giúp mk nha
cảm ơn các bn nhiều
arigatogozaimasu
cho x, y la cac so ko am thoa man x+y<=2
cmr\(\frac{2+x}{1+x}+\frac{1-2y}{1+2y}>=\frac{8}{7}\)
CM các bđt sau :
a)\(\dfrac{a+b+c}{3}\cdot\dfrac{x+y+z}{3}\le\dfrac{ax+by+cx}{3}\)
b)\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
c)\(\dfrac{a1^2+a2^2+a3^2+....+an^2}{n}\ge\left(\dfrac{a1+a2+a3+....+an}{n}\right)^2\)
Giúp mk nhanh nhé các bạn! Tối mk phải nộp bài rồi!
Bài 1: Cho a, b, c>0, cmr:
a/bc+b/ca+c/ab>=2(1/a+1/b-1/c)
Bài2: CMR với mọi x, y, ta có
x^3/x^2+xy+y^2>=2x-y/3
lm ơn lm giùm mk ạ
thanks trc
1, Cho a,b,c > 0 ; a+b+c=4. Chứng minh: \(\frac{ab}{a+b+2c}+\frac{bc}{b+c+2a}+\frac{ca}{a+c+2b}\le1\)
2, Cho a,b>0 và a+b=1.Chứng minh : \(\frac{3}{ab}+\frac{2}{a^2+b^2}\ge16\)
3, Cho a,b,c >0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=4\).Chứng minh: \(\frac{1}{2a+b+c}+\frac{1}{a+c+2b}+\frac{1}{b+a+2c}\le1\)
(Bạn nào biết cách làm thì giúp mình nha, cảm ơn nhìu!)
\(a)\)\(Cho\) \(a>b,ab=1\)
\(C.m:\)\(\dfrac{a^2+b^2}{a-b}\ge2\sqrt{2}\)
\(b)C.m:\dfrac{a^2+2}{\sqrt{a^2+1}}\ge2\)
Bài 1: Hãy so sánh a và b nếu:
a) 6 - 5a < 6 - 5b
b) -2a +3 > -2b+2 ( Cho a<b)