Ta có
\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n\left(n+1\right)};\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)
vậy \(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n}-\frac{1}{n+1}\)
Ta có: \(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Vậy \(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n}-\frac{1}{n-1}\) (ĐPCM)
Ta có: \(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Vậy \(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n}-\frac{1}{n+1}\) (ĐPCM)