Cho 2 đường tròn (O;R) và (O'R'), biết R>R', tiếp xúc ngoài tại A. Trên (O) lấy B sao cho AB=R. Trên cung lớn AB lấy D, AD cắt (O') tại E. EF song song AB (F thuộc O'), cắt BD tại G.
a)C/m độ dài EG không phụ thuộc vào D
b)Tứ giác BGFA là hình gì? Vì sao?
c)Tính GTLN của SABGE theo R và R'
Cho nửa đường tròn tâm O, đường kính AD. Trên nửa đường tròn lấy điểm B, C ( B nằm trên cung AC). Gọi AC cắt BD tại E, kẻ EF vuông góc với AD(F thuộc AD). Chứng minh:
a) AB,DC,EF đồng quy
b) Tính AB.AP+CD.CP theo R của đường tròn tâm O đường kính AD
cho hai đường tròn (O;R) và (O',R') tiếp xúc ngoài tại A , một góc vuông xAy thay đổi quanh A sao cho tia Ax cắt (O;R) tại B và Ay cắt (O',R') tại C. gọi M là trung điểm của BC,MO cắt AB tại D, MO' cắt AC tại E chứng minh rằng tứ giác ADME là hình chữ nhật.
cho 2 đường tròn (O;R) và (O'R') tiếp xúc ngoài tại A,góc vuông xoy thay đổi luôn đi qua A,cắt đường tròn (O;R) vad (O'R') tại B và C.Gọi H là hình chiếu của A trên BC.Xác định vị trí cả B,C để AH có độ dài lớn nhất
Cho (O;R) và (O;r) (R>r) tiếp xúc ngoài tại C , kẻ đường kính AC của (O) và BC của (O,).Một dây cung DE của (O) vuông góc với AB tại M là trung điểm AB , tia CD cắt (O,) tại F .
a, Tứ giác ADBE là hình gì ?
b Chứng minh 3 điểm B,E,F thẳng hàng
c Đường thẳng BD cắt (O,) tại G . Chứng minh DF,EG ,AB đông quy
d Chứng minh MF là tiếp tuyến của (O')
Cho (O;R) và điểm A nằm ngoài đường tròn (O). Qua A vẽ tiếp tuyến AB tiếp xúc với đường tròn (O) tại B. Vẽ một đường thẳng qua A cắt đường tròn tại hai điểm M và N ( M nằm giữa A và N). Qua M kẻ đường thẳng song song với AB cắt BN tại E. Gọi I là trung điểm của ME. Vẽ dây BQ của đường tròn (O) sao cho BQ đi qua điểm I
a) Chứng minh hai tam giác BMI và tam giác BQM đồng dạng
b)Chứng minh tứ giác QIEN nội tiếp
c) Chứng minh BM.QN=BN.MQ
Cho (O;R) và dây AB. Các tiếp tuyến tại A và B, của (O) cắt nhau tại C. a) C/m: Tứ giác ACBO nội tiếp. b) Lấy điểm I trên đoạn AB ( IB < IA). Từ điểm I kẻ đường thẳng vuông góc với OI cắt AC tại E và cắt đường thẳng BC tại D. C/m: góc IBO = góc IDO. c) C/m: OE = OD. d) C/m: Cho góc AOB = 120°. Tính độ dài đoạn thẳng OE khi OI = 2R/3
Cho đường tròn (O) và đường kính AB =2R . Trên tia đối của tia BA lấy điểm C sao cho BC=R . Lấy điểm D thuộc đường trond (O) sao cho BD =R . Đường thẳng vuông góc với AC tại C cắt AD tại N
a, Cm tứ giác BCND nội tiếp
b, Cm tam giác ABN cân
c, Tính AD.AN theo R
Cho đường tròn (O; R) có đường kính AB. Vẽ các tiếp tuyến Ax, By của đường tròn (O), trên đường tròn (O) lấy một điểm E bất kỳ (E ≠ A; B). Tiếp tuyến tại E của đường tròn (O) cắt Ax và By lần lượt tại C và D.
a. Chứng minh: CD=AC+BD
b. Vẽ EF ⊥ AB tại F, BE cắt AC tại K. Chứng minh: AF.AB=KE.EB
c. EF cắt CB tại I. Chứng minh ΔAFC đồng dạng với ΔBFD suy ra FE là tia phân giác của góc CFD
d. EA cắt CF tại M, EB cắt DF tại N. Chứng minh M, I, N thẳng hàng.