Bài 7. (3 điểm) Cho hai đường tròn (O;R) và (O';r) tiếp xúc ngoài tại A. Tiếp tuyến chung ngoài MN cắt tiếp tuyến chung trong tại K (M, N là 2 tiếp điểm; M ∈ (O) và N ∈ (O')). a) Chứng minh AK = MK và △AMN là tam giác vuông. b) MA cắt (O') tại B, NA cắt (O) tại C. Chứng minh SAMN = SABC. c) Chứng minh BK và ON cắt nhau tại một điểm nằm trên (O').
Từ điểm A nằm ngoài đường tròn (O) kẻ tiếp tuyến AM với đường tròn (M là tiếp điểm). Kẻ dây MN vuông góc với AO tại H. Kẻ đường thẳng đi qua A cắt đường tròn tại B,C(điểm B nằm giữa A và C). Tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại K, gọi I là trung điểm của BC. a) Chứng minh 4 điểm B,C,O,K cùng thuộc một đường tròn. b) Chứng minh AN là tiếp tuyến của đường tròn (O) c) Chứng minh OI.OK=ON² d) Chứng minh M,N,K thẳng hàng.
Cho đường tròn (O;R), điểm A thuộc (O). Đường trung trực của đoạn OA cắt (O) tại M và N, cắt OA tại H
a, Chứng minh: H là trung điểm của MN và đều
b, Vẽ 2 tiếp tuyến tại M và N của (O), chúng cắt nhau tại S. Chứng minh: 3 điểm O,A,S thẳng hàng. Tính MS,MH theo R
c, vẽ đường thẳng vuông góc với OM tại O cắt SN tại B. CHứng minh: AB là tiếp tuyến của (O) và A là tâm đường tròn nội tiếp
d,Gọi I là giao điểm của MN và OB. Chứng minh: HI.HN+HA.HS=R2
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Một đường thẳng d đi qua B cắt (O) tại điểm thứ hai M và cắt (O') tại điểm thứ hai N. Các tiếp tuyến của (O) tại M và của (O') tại N cắt nhau tại điểm P.
a. Cho biết ∠MAN = α. Tính ∠MPN theo α
b. Chứng minh rằng ∠OAO' = 90o khi và chỉ khi ΔMNP vuông tại P
Cho đường tròn (O), đường kính AB=2R. Trên tâm O lấy điểm M(MA<MB). Tiếp tuyến tại M (O) cắt 2 tiếp tuyến tại A và B của đường tròn lần lượt tại C, D.CM:
a) CM CD=AC+BD
b)Vẽ đường thẳng MB cắt AC tại E và vẽ MH vuông AB tại H. CM OC//MB và ME.MB=AH.AB
c)HM là tia phân giác của góc CHD
cho 2 đường tròn o và o tiếp xúc ngoài tại a. Trên tia Ax vuông góc với OO' lấy một điểm M. Vẽ tiếp tuyến MB với đường tròn (O),tiếp tuyến MC với đường tròn (O'), tia BO cắt tia CO tại N a. Chứng minh : MA=MB=MC b. Chứng minh tứ giác MBNC nội tiếp c. Chứng minh BC ⊥ MN
Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Một đường thẳng điểm đi qua B cắt (O) ở M và (O’) ở N (M và N khác B). Các tiếp tuyến tại M và N của hai đường tròn cắt nhau ở P. a) Tính MPN cho biết MAN . b) Chứng tỏ rằng: MNP vuông tại P o OAO 90 .
Cho 2 đường tròn (O) và (O’) cắt nhau tại A,B. Tiếp tuyến tọa A của sẽ (O) cắt OO’ tại E. Gọi D là điểm trên đường tròn (O), đường thẳng DA,DB cắt (O’) tạiM,N. CM DE đi qua trung điểm của MN
giúp mình giải bài này ạ
Bài 7 : Cho nửa đường tròn tâm O đường kính AB = 2R. Gọi M là một điểm chuyển động trên nửa đường tròn đó. Tiếp tuyến tại M của (O) cắt các tiếp tuyến Ax tại A và tiếp tuyến By tại B của (O) ở C và D. a/ Chứng minh: OACM và OBDM nội tiếp. b/ Chứng minh: ACO MBD c/ Nối OC và OD cắt AM và BM tại E và F. Tìm quỹ tích trung điểm I của EF ?