cho đường tròn (O;R) và đường thẳng (d) không đi qua tâm (O) cắt đường tròn (O;R) tại hai điểm phân biệt A,B. điểm M trên (d) và namè ngoài đường tròn (O;R) ,qua M kẽ hai tiếp tuyến MN và MP tới đường tròn (O;R) (P;N là hai tiếp tuyến) a) chứng minh: tứ giác MNOP nội tiếp được đường tròn b) chứng minh: MA×MB=MN^2
Từ điểm A nằm ngoài đường tròn (O) kẻ tiếp tuyến AM với đường tròn (M là tiếp điểm). Kẻ dây MN vuông góc với AO tại H. Kẻ đường thẳng đi qua A cắt đường tròn tại B,C(điểm B nằm giữa A và C). Tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại K, gọi I là trung điểm của BC. a) Chứng minh 4 điểm B,C,O,K cùng thuộc một đường tròn. b) Chứng minh AN là tiếp tuyến của đường tròn (O) c) Chứng minh OI.OK=ON² d) Chứng minh M,N,K thẳng hàng.
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Một đường thẳng d đi qua B cắt (O) tại điểm thứ hai M và cắt (O') tại điểm thứ hai N. Các tiếp tuyến của (O) tại M và của (O') tại N cắt nhau tại điểm P.
a. Cho biết ∠MAN = α. Tính ∠MPN theo α
b. Chứng minh rằng ∠OAO' = 90o khi và chỉ khi ΔMNP vuông tại P
Cho đường tròn (O) A thuộc (O) kẻ tia Ax là tiếp tuyến của đường tròn (O) tại A trên tia Ax lấy điểm M cố định.Đường thẳng d thay đổi đi qua M và không đi qua tâm O cắt (O) tại 2 điểm B và C (B nằm giữa C và M góc ABC nhỏ hơn 90 độ) gọi I là trung điểm BC
1. Chứng minh 4 điểm A O I M thuộc cùng 1 đường tròn
2. Vẽ đường kính AD của (O) gọi H là trực tâm của tam giác ABC chứng minh H đối xứng với D qua I tính HA biết tâm O cách đường thẳng d là 2cm
3. Chứng minh H và A cùng thuộc 1 đường tròn cố định khi đường thẳng d thay đổi
cho đường tròn (o;r) . vẽ đt d ko đi qua điểm O cắt đường tròn (O) tại 2 điểm C và D . từ 1 điểm I thuộc đường thẳng d và ở ngoài đường tròn (O) ( sao cho ID>IC ) , KẺ 2 tiếp tuyến IA và IB tới đtròn (O) . gọi H là trung điểm của CD , giao điểm của AB và OI là P
CMR:
a)năm điểm A, H , O , B , I cùng thuộc 1 đtròn
b) OP . OI = OD ²
Cho đường tròn (O) đường kính C là điểm trên đường tròn (O) sao cho Vẽ Chứng minh vuông. Tính độ dài CH và số đo (làm tròn đến độ)Tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại D. Chứng minh Tiếp tuyến tại A của đường tròn (O) cắt BC tại E. Chứng minh: Gọi I là trung điểm của CH. Tia BI cắt AE tại F. Chứng minh: FC là tiếp tuyến của đường tròn (O).Cho đường tròn (O) đường kính C là điểm trên đường tròn (O) sao cho Vẽ Chứng minh vuông. Tính độ dài CH và số đo (làm tròn đến độ)Tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại D. Chứng minh Tiếp tuyến tại A của đường tròn (O) cắt BC tại E. Chứng minh: Gọi I là trung điểm của CH. Tia BI cắt AE tại F. Chứng minh: FC là tiếp tuyến của đường tròn (O).
Cho đường tròn (O;R), điểm A thuộc (O). Đường trung trực của đoạn OA cắt (O) tại M và N, cắt OA tại H
a, Chứng minh: H là trung điểm của MN và đều
b, Vẽ 2 tiếp tuyến tại M và N của (O), chúng cắt nhau tại S. Chứng minh: 3 điểm O,A,S thẳng hàng. Tính MS,MH theo R
c, vẽ đường thẳng vuông góc với OM tại O cắt SN tại B. CHứng minh: AB là tiếp tuyến của (O) và A là tâm đường tròn nội tiếp
d,Gọi I là giao điểm của MN và OB. Chứng minh: HI.HN+HA.HS=R2
Cho đường tròn (O) và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm).Đường thẳng qua B và song song với AC cắt (O) tại điểm thứ 2 là D. chứng minh BE đi qua trung điểm M của AC
Cho đường tròn (O) và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm).Đường thẳng qua B và song song với AC cắt (O) tại điểm thứ 2 là D. chứng minh BE đi qua trung điểm M của AC