a) Xét hai tam giác ABE và ADC có:
AB = AD (gt)
\(\widehat{A}\): góc chung
AC = AE (gt)
Vậy: \(\Delta ABE=\Delta ADC\left(c-g-c\right)\)
Suy ra: BE = CD (hai cạnh tương ứng)
b) Ta có: BC = AC - AB
DE = AE - AD
Mà AB = AD (gt)
AC = AE (gt)
\(\Rightarrow\) BC = DE
Ta lại có: \(\widehat{B_1}+\widehat{B_2}=180^o\)
\(\widehat{D_1}+\widehat{D_2}=180^o\)
Mà \(\widehat{B_1}=\widehat{D_1}\) (\(\Delta ABE=\Delta ADC\))
\(\Rightarrow\) \(\widehat{B_2}=\widehat{D_2}\)
Xét hai tam giác OBC và ODE có:
\(\widehat{B_2}=\widehat{D_2}\) (cmt)
BC = DE (cmt)
\(\widehat{C_1}=\widehat{E_1}\) (\(\Delta ABE=\Delta ADC\))
Vậy: \(\Delta OBC=\Delta ODE\left(g-c-g\right)\).