Cho a,b,c>0 chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) (1). Áp dụng chứng minh các BĐT sau:
a) \(\left(a^2+b^2+c^2\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{3}{2}\left(a+b+c\right)\)
b) Cho x,y,z>0 tm x+y+z=1. Tìm GTLN của bt \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
Cho a, b, c. CMR:
\(\sqrt[3]{\left(\frac{2a}{b+c}\right)^2}+\sqrt[3]{\left(\frac{2b}{c+a}\right)^2}+\sqrt[3]{\left(\frac{2c}{a+b}\right)^2}\ge3\)
Cho a,b,c∈R.CM bđt \(a^2+b^2+c^2\ge ab+bc+ca\) (1). Áp dụng cm các bđt sau:
a)\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
b)\(\frac{a^2+b^2+c^2}{3}\ge\left(\frac{a+b+c}{3}\right)^2\)
c)\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
d)\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
e)\(\frac{a+b+c}{3}\ge\sqrt{\frac{ab+bc+ca}{3}}vớia,b,c>0\)
f)\(a^4+b^4+c^4\ge abc\) nếu a+b+c=1
Cho các số thực dương a, b, c. CMR: \(\frac{a^4}{b^2\left(c+a\right)}+\frac{b^4}{c^2\left(a+b\right)}+\frac{c^4}{a^2\left(b+c\right)}\) ≥ \(\frac{a+b+c}{2}\)
Cho a,b,c>0. CM các bđt sau:
a)\(\left(a^3+b^3+c^3\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)^2\)
b)\(3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
c)\(9\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)
C=\(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x+1}{x^2-1}\right)\frac{x+2006}{x}\)
a,Rút gọn
b.Tìm x∈Z để C∈Z
Cho a,b>0 . Chứng minh \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) (1). Áp dụng cm các bđt sau:
a)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\) với a,b,c>0
b)\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge2\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\) với a,b,c>0
c)Cho a,b,c>0 tm \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=4\) . CM \(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le1\)
d) Cho a,b,c là độ dài 3 cạnh của 1 tam giác, p là nửa chu vi .CMR:
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a,b,c,d>0. CMR nếu \(\frac{a}{b}< 1\) thì \(\frac{a}{b}< \frac{a+c}{b+c}\) (1). Áp dụng cm các bđt sau
a)\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
b)\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
c)\(2< \frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{d+a}{d+a+b}< 3\)
\(a\frac{3}{5}-\left(-\frac{1}{2}\right)+\frac{2}{5} b\frac{3}{7}.19\frac{1}{3}-\frac{3}{7}.33\frac{1}{3}c\left(\frac{3^4}{5}\right).\left(\frac{5^3}{3}\right)d\frac{11}{23}-\frac{5}{41}+\frac{13}{24}+0,5-\frac{36}{41}\)