Lời giải:
\(A=4^0+4^2+...+4^{2014}+4^{2016}\)(1)
\(\Rightarrow 4^2.A=4^2+4^4+...+4^{2016}+4^{2018}\) (2)
Lấy (2) trừ (1):
\((4^2-1)A=(4^2+4^4+...+4^{2016}+4^{2018})-(1+4^2+...+4^{2016})\)
\(\Leftrightarrow 15A=4^{2018}-1\Rightarrow A=\frac{4^{2018}-1}{15}\)
Do đó:
\(B-A=\frac{4^{2017}}{3}-\frac{4^{2018}-1}{15}=\frac{5.4^{2017}-4^{2018}+1}{15}\)
\(\Leftrightarrow B-A=\frac{4^{2017}(5-4)+1}{15}=\frac{4^{2017}+1}{15}\)
Ta có:
A=4^0+4^2+...+4^2016
4A=(4^0+4^2+...+4^2016).4
4A=4^1+4^2+...+4^2017
3A=4A-A=(4^1+4^2+...+4^2017)-(4^0+4^2+...+4^2016)
3A=4^2017-1
A=(4^2017-1):3
Ta lại có:
B-A=(4^2017:3)-[(4^2017-1):3]
B-A=[4^2017-(4^2017-1)]:3
B-A=(4^2017-4^2017+1):3
B-A=1:3
B-A=1/3 (1 phần 3)
Vậy B-A = 1/3
A=1+4^1+..+4^2016(1)
4A=4(A=1+\(4^1+4^2+..+4^{2016}\))
=\(4^1+4^2+..+4^{2016}\)+\(4^{2017}\)(2)
Lấy (2)-(1)\(\Rightarrow3a=4^{2017}-1\Rightarrow A=\left(4^{2017}-1\right):3\)
\(\Rightarrow B-A=4^{2017}:3-\left(4^{2017}-1\right):3\)
=\(\left[4^{2017}-4^{2017}+1\right]:3\)
=1:3=\(\dfrac{1}{3}\)
A = 40 + 42 + .......... + 42016
42A = 42 + 44 + .............. + 42018
\(\Rightarrow\) ( 42 - 1 )A = ( 42 + 44 + ........ + 42018 ) - ( 40 + 42 + ......... + 42016 )
\(\Rightarrow\) 15A = 42 + 44 + ....... + 42018 - 40 - 42 - ........... - 42016
\(\Rightarrow\) 15A = 42018 - 40 = 42018 - 1
\(\Rightarrow\) A = \(\dfrac{4^{2018}-1}{15}\)
\(\Rightarrow\) B - A = \(\dfrac{4^{2017}}{3}\) - \(\dfrac{4^{2018}-1}{15}\)
\(\Rightarrow\) B - A = \(\dfrac{5.4^{2017}-4^{2018}+1}{15}\)
\(\Rightarrow\) B - A = \(\dfrac{4^{2017}.\left(5-4\right)+1}{15}\)
\(\Rightarrow\) B - A = \(\dfrac{4^{2017}.1+1}{15}\) = \(\dfrac{4^{2017}+1}{15}\)
Vậy B - A = \(\dfrac{4^{2017}+1}{15}\)