c: \(C=\dfrac{a+\sqrt{ab}+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}:\left(\dfrac{a}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}-\dfrac{b}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\dfrac{a+b}{\sqrt{ab}}\right)\)
\(=\dfrac{a+b}{\sqrt{a}+\sqrt{b}}:\dfrac{a\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)-b\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)-\left(a+b\right)\left(a-b\right)}{\sqrt{ab}\left(a-b\right)}\)
\(=\dfrac{a+b}{\sqrt{a}+\sqrt{b}}:\dfrac{a^2-a\sqrt{ab}-b\sqrt{ab}-b^2-a^2+b^2}{\sqrt{ab}\left(a-b\right)}\)
\(=\dfrac{a+b}{\sqrt{a}+\sqrt{b}}\cdot\dfrac{\sqrt{ab}\left(a-b\right)}{-\sqrt{ab}\left(a+b\right)}\)
\(=-\left(\sqrt{a}-\sqrt{b}\right)\)