Câu 1:
Để $y$ đồng biến trên $(-\infty; +\infty)$ thì:
$y'=3x^2-2(2m-1)x+(2-m)\geq 0$ với mọi $x\in\mathbb{R}$
Điều này xảy ra khi: $\Delta'=(2m-1)^2-3(2-m)\leq 0$
$\Leftrightarrow 4m^2-m-5\leq 0$
$\Leftrightarrow (4m-5)(m+1)\leq 0$
$\Leftrightarrow -1\leq m\leq \frac{5}{4}$
Câu 2:
ĐK: $m\not\in (-1;+\infty)$
$y=\frac{mx+4}{x+m}\Rightarrow y'=\frac{m^2-4}{(x+m)^2}$
Để $y$ nghịch biến trên khoảng $(-\infty; 1)$ thì:
\(\left\{\begin{matrix} m\not\in (-1;+\infty)\\ y'=\frac{m^2-4}{(x+m)^2}\leq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\not\in (-1;+\infty)\\ -2\leq m\leq 2\end{matrix}\right.\)
Với $m$ nguyên ta suy ra $m=-1; -2$. Vậy có 2 giá trị nguyên của $m$ thỏa mãn.