Câu 1:
a) Ta có: \(-2\sqrt{3}=-\sqrt{12}\)
mà \(-\sqrt{14}< -\sqrt{12}\)
nên \(-\sqrt{14}< -2\sqrt{3}\)
b) Ta có: \(2\sqrt{3}=\sqrt[3]{24\sqrt{3}}\)
\(3\cdot\sqrt[3]{2}=\sqrt[3]{54}\)
mà \(\sqrt[3]{24\sqrt{3}}< \sqrt[3]{54}\)
nên \(2\sqrt{3}< 3\cdot\sqrt[3]{2}\)
c) Ta có: \(3+\sqrt{3}=\sqrt{3}\cdot\left(\sqrt{3}+1\right)\)
\(3\sqrt{3}=\sqrt{3}\cdot3\)
mà \(\sqrt{3}\cdot\left(\sqrt{3}+1\right)>\sqrt{3}\cdot3\)
nên \(3+\sqrt{3}>3\sqrt{3}\)