Câu 1: Rút gọn biểu thức: B= x-2/y - x/x-2 +4/x(x-2) trong đó x khác 0 và x khác 2
Câu 2: Cho hcn ABCD, gọi E là trung điểm của AB. Kẻ EF vuông góc với CD tại F
a) Chứng minh t/g AEDF là hcn
b) Gọi I là trung điểm EF, c/m điểm I cũng là trung điểm của AC
c) Kẻ FH vuông góc với EC tại H. Gọi M và N lần lượt là trung điểm của EB và HC. C/m MN vuông góc với FN
câu 1:
\(B=\dfrac{x-2}{y}-\dfrac{x}{x-2}+\dfrac{4}{x.\left(x-2\right)}\)
\(\Leftrightarrow B=\dfrac{\left(x-2\right)^2.x}{y.\left(x-2\right).x}-\dfrac{x^2y}{y.\left(x-2\right).x}+\dfrac{4y}{y.\left(x-2\right).x}\)
\(\Leftrightarrow B=\dfrac{\left(x-2\right)^2-x^2y+4y}{x^2y-2xy}\)
\(\Leftrightarrow B=\dfrac{\left(x-2\right)^2-y.\left(x^2-4\right)}{xy.\left(x-2\right)}\)
\(\Leftrightarrow B=\dfrac{\left(x-2\right)^2-y.\left(x-2\right).\left(x+2\right)}{xy.\left(x-2\right)}\)
\(\Leftrightarrow B=\dfrac{\left(x-2\right)\left[x-2-y.\left(x+2\right)\right]}{xy.\left(x-2\right)}\)
\(\Leftrightarrow B=\dfrac{x-2-xy+2}{xy}=\dfrac{x-xy}{xy}\)
\(\Leftrightarrow B=\dfrac{x}{xy}-\dfrac{xy}{xy}=\dfrac{1}{y}-1=\dfrac{1-y}{y}\)
Vậy \(B=\dfrac{1-y}{y}\)
a) Xét tứ giác AEFD có:
\(\widehat{EAD}=\widehat{ADF}=\widehat{EFD}\) (cùng bằng 90 độ)
=> AEFD là hình chữ nhật (do có 3 góc vuông)
Gọi I' là 1 điểm mà AC cắt EF
Xét tam giác CAD có:
I' nằm trên EF nêm I'F song song với AD (AEFD là hình chữ nhật) (1)
vì AEFD là hình chữ nhật nên AE=DF => DF = DC :2 <=> F là trung điểm của CD (2)
Từ (1) và (2) => I' là trung điểm của AC đồng thời ta được I'F = AD:2
mà AD = EF
=> I' là trung điểm của EF => I' trùng với I
=> I là trung điểm của AC
( do I' là trung điểm của AC và I' là giao điểm của AC và EF)
=> điều phải chứng minh