câu 2 : x^2-6x+9+y^2+10y+25+(4z-1)^2=0
(y+5)^2=0 => y=-5
câu 2 : x^2-6x+9+y^2+10y+25+(4z-1)^2=0
(y+5)^2=0 => y=-5
giá trị của y thỏa mãn
x^2-6x+y^2+10y+34=-(4z-1)^2
1. Giá trị của y thỏa mãn là: \(x^2-6x+y^2+10y+34=-\left(4z-1\right)^2\)
2. Tính giá trị biểu thức \(\dfrac{5\left(x+y\right)^2}{5\left(x-y\right)^2}\) biết xy = 1
bài 1 : cho hình thang ABCD có \(\widehat{A}=\widehat{D}=90^0,AB=4cm\)và AB=BC=2CD. Kẻ CD\(\perp\)AB ở H
1, CM \(\Delta AHC=\Delta CDA\), rồi suy ra H là trung điểm AB
2, So sánh : AC và BC
3, tính \(\widehat{ABC}\)và \(\widehat{BCD}\)
4, tính diện tích ABCD
bài 2 : Cho hình thang ABCD ( AB // CD ).M là trung điểm cảu AD , N là trung điểm của BC. Gọi I , K theo thứ tự là giao điểm của MN với BD,AC. Cho AB=6cm , CD = 14cm
1, Tính độ dài MI, IK, KN
2, tính diện tích ABNM, biết đường cao của hình thang ABCD là 8cm
1. Cho x3 - x = 6. Tính giá trị của biểu thức A = x6 - 2x4 + x3 + x2 -x
2. Tìm GTNN của: P = ( x - 2 )2 + 3x2 + 1
3. Tìm số nguyên n sao cho phân thức \(\frac{n+2}{n^2+4}\) có giá trị là số nguyên
4. Cho x + y + z = xy + yz + zx = 0
Tính giá trị của biểu thức B = x100 + y101 + z102
5. Cho các số a, b, c thỏa mãn: a(a - b) + b(b - c) + c(c - a) = 0
Tìm GTNN của N = a3 + b3 + c3 - 3abc + 3ab - 3c + 5
6. Tìm các số nguyên x, y, z thỏa mãn x - y -z = -3 và x2 - y2 - z2 = 1
7. Cho x3 + x = 2x2. Tính giá trị của P = x2010 - 1
8. Tìm GTLN của P = 3x - x2 + 1
9. Tìm số nguyên n sao cho 3n3 + 10n2 - 5 chia hết cho 3n + 1
10. Cho a + b = 2 và a2 + b2 = 2. Tính a4 + b4
11. Tìm x, y biết: 3x2 + 2y2 = 4xy - 6x - 9
12. Cho hình thang ABCD ( AB//CD). Biết \(\widehat{A}-\widehat{D}=20^O\) và \(\widehat{B}=2\widehat{C}\). Tính các góc của hình thang ABCD
13. a) Cho x + 2y = 5
Tính giá trị của biểu thức M = x2 + 4xy - 2x - 4y + 4y2 + 1
b) Tìm GTNN của P = (2x - 1)2 + (x + 2)2 + 3
c) Cho ba số a, b, c thỏa mãn a2(b - c) + b2(c - a) + c2(a - b) = 0. CMR trong ba số a, b, c đó có ít nhất 2 số bằng nhau
Bài 1: Phân tích các đa thức sau thành nhân tử
a. 1 - 4x2
b. 8 - 27x3
c. 27 + 27x + 9x 2 + x3
d. 2x3 + 4x2 + 2x
e. x2 - 5x - y2 + 5y
f. x2 - 6x + 9 - y2
g. 10x (x - y) - 6y(y - x)
h. x2 - 4x - 5
i. x4 - y4
Bài 2: Tìm x, biết
a. 5(x - 2) = x - 2
b. 3(x - 5) = 5 - x
c. (x +2)2 - (x+ 2) (x - 2) = 0
Bài 3: Tìm giá trị nhỏ nhất của biểu thức
a. A = x2 - 6x + 11
b. B = 4x2 - 20x + 101
c. C = -x2 - 4xy + 5y2 + 10x - 22y + 28
Tìm x,y,z
x2-6x+y2+10y+34= -(4z-1)2
Hình thang ABCD có \(\widehat{A}=\widehat{B}=90^o\), \(AB^2=AD\times BC\) và \(AC^2+BD^2=64\). Tìm giá trị lớn nhất của diện tích hình thang ABCD.
Gia tri cua y thoa man :
\(x^2-6x+y^2+10y+34=-\left(4z-1\right)^2\)