***********************************************************
a) Ta có: \(\dfrac{x+12}{10-x}=-\dfrac{x-10+22}{x-10}=-1+\dfrac{22}{x-10}\)
Vì \(\left(x+12\right)⋮\left(10-x\right)\) nên \(22⋮\left(x-10\right)\)
Do đó ta có bảng:
x-10 | -22 | -11 | -2 | -1 | 1 | 2 | 22 |
x | -12 | -1 | 8 | 9 | 11 | 12 | 32 |
Vậy \(x\in\left\{-12;-1;8;9;11;12;32\right\}\)
c) \(\left(x-3\right)⋮\left(x+1\right)\)
=> \(\left(x-3\right)-\left(x+1\right)⋮\left(x+1\right)\)
=> \(\left(x-3-x-1\right)⋮\left(x+1\right)\)
=>\(-4⋮\left(x+1\right)\)
=> x+1\(\in\) ư(-4)= \(\left\{\pm1,\pm2,\pm4\right\}\)
ta có bảng sau
x+1 | -4 | -2 | -1 | 1 | 2 | 4 |
x | -5 | -3 | -2 | 0 | 1 | 3 |
vậy x\(\in\left\{-5,-3;-2;0;1;3\right\}\)