\(\left\{{}\begin{matrix}AB=AC\\BD=DC\\AD\text{ chung}\end{matrix}\right.\Rightarrow\Delta ADB=\Delta ADC\left(c.c.c\right)\\ \Rightarrow\widehat{BAD}=\widehat{CAD}\)
Vậy AD là p/g \(\widehat{BAC}\)
\(\left\{{}\begin{matrix}AB=AC\\BD=DC\\AD\text{ chung}\end{matrix}\right.\Rightarrow\Delta ADB=\Delta ADC\left(c.c.c\right)\\ \Rightarrow\widehat{BAD}=\widehat{CAD}\)
Vậy AD là p/g \(\widehat{BAC}\)
Bài 4: Cho tam giác ABC có AB < BC. Tia phân giác của ABC cắt AC tại M. Trên cạnh BC lấy điểm E sao cho BE = BA. a) Chứng minh rằng: BAM = BEM b) Chứng minh rằng: AM = ME c) Chứng minh rằng: MB là tia phân giác của AME d) Chứng minh rằng: AE ⊥ BM e) Chứng minh rằng: AMB ABM
Cho tam giác ABC a) Cho biết góc A= 80 độ, góc B= 60 độ. So sánh các cạnh của tam giác ABC b) Gọi M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MA=MD. Chứng minh rằng: AB=CD và AB + AC > AD c) Gọi N là trung điểm của đoạn thẳng CD và K là giao điểm của AN và BC. Chứng minh rằng: BC = 3CK
8. Cho tam giác ABC có AB = AC. Tia phân giác Am của góc BAC cắt BC tại D. Gọi H, K tương ứng là hình chiếu
vuông góc của D xuống AB, AC.
a) Chứng minh AD ⊥ BC và D là trung điểm của cạnh BC.
b) Chứng minh DH = DK, và AD là đường trung trực của đoạn HK.
c) Giả sử B
!AC = 4Bˆ . Tính góc BAD.
9. Cho tam giác ABC nhọn, AB < AC. M là trung điểm cạnh AC. Trên tia đối của tia MB lấy điểm D sao cho MB =
MD.
a) Chứng minh rằng ΔBMC = ΔDMA .
b) Kẻ AH ⊥ BC,H ∈BC . Chứng minh AH ⊥ AD .
c) Chứng minh A
!BC = CD!A
d) Kẻ CK ⊥ AD,K ∈AD . Chứng minh BH = DK và H, M, K thẳng hàng.
Cho tam giác ABC có AB=Ac.Trên hai cạnh Ab và Ac lần lượt lấy cấc điểm D và E sao cho Ad=AE .Nối D và E . Gọi M,N là trung điểm của DE và Bc . Chứng minh rằng :
a\ AM là tia phân giác của góc BAC
b\ A, M , N thẳng hàng
Giúp mình nka ! Thank you mn nhìu
cho tam giác ABC có AB = AC. Lấy điểm D trên cạnh AB, lấy điểm E trên cạnh AC sao cho AD=AE
a) Chứng minh : BE = CD
b) Gọi O là giao điểm của BE và CD. Chứng minh rằng ΔBOD = ΔCOE
c) Chứng minh: AO là tia phân giác của góc BAC
Cho ∆ABC có AB < AC. Tia phân giác của góc A cắt BC tại D. Trên AC lấy điểm E sao cho AB = AE. Gọi I là giao điểm của AD và BE.
a) Chứng minh rằng: ∆AIB = ∆AIE.
b) Chứng minh: AD ⊥ BE.
c) Vẽ IF là tia đối của tia IA sao cho IF =IA. Chứng minh rằng: AB // EF.
d) Qua A vẽ AH ⊥AB sao cho AH = AB và vẽ AK⊥AC sao cho AK = AC (H và K nằm khác phía đối với AD). Chứng minh rằng BK = CH.
Cho tam giác ABC có M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD a) Chứng minh rằng A AMD= ACMB b) Chứng minh rằng AB // CD c) Vẽ tia CN 1 AD (N e AD) và API BC (Pe BC). Chứng minh rằng ND = BP d) Chứng minh rằng N, M, P thẳng hàng
Cho ABC có AB = AC . Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho AM = MD.
a) Chứng minh ABM = DCM b) Chứng minh AB//DC
c) Chứng minh AM là phân giác của góc A. d) Chứng minh rằng AM là trung trực của BC.
e) Tìm điều kiện của ABC để