Câu 15:
Gọi tọa độ cua $M$ là \((a,\frac{2a+1}{a-1})\)
Ta có \(y=\frac{2x+1}{x-1}\Rightarrow y'=\frac{-3}{(x-1)^2}\)
PT tiếp tuyến: \(y=\frac{-3}{(a-1)^2}(x-a)+\frac{2a+1}{a-1}\)
Dễ thấy hai tiệm cận của $(C)$ là 2 đường thẳng \(x=1;y=2\)
Do đó giao điểm $A,B$ của phương trình tiếp tuyến với hai tiệm cận (đứng và ngang) lần lượt là:
\(A(1;\frac{2a+4}{a-1});B(2a-1;2)\)
\(\Rightarrow AB=\sqrt{(2-2a)^2+(\frac{2a+4}{a-1}-2)^2}=2\sqrt{(a-1)^2+\frac{9}{(a-1)^2}}\)
Áp dụng BĐT Am-Gm: \((a-1)^2+\frac{9}{(a-1)^2}\geq 2\sqrt{9}=6\Rightarrow AB\geq 2\sqrt{6}\)
Đáp án C
Câu 16:
Vì đồ thị hàm số có 2 tiệm cận đứng là \(x=1;x=-1\) nên dễ dàng loại phương án A,B
Theo đồ thị, $y$ luôn nhận giá trị dương, do đó , loại phương án $D$
Vậy đáp án đúng là đáp án C