Bài 3:Cho biểu thức B=\(\left(\dfrac{6}{a-1}+\dfrac{10-2\sqrt{a}}{a\sqrt{a}-a-\sqrt{a}+1}\right)\).\(\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}\)(với a>0 và a khác 1)
a)rút gọn B
b)Đặt C=B.(\(a-\sqrt{a}+1\)).So sánh C và 1
So sánh:
a) \(4\sqrt{7}\) và \(3\sqrt{13}\)
b) \(3\sqrt{12}\) và \(2\sqrt{16}\)
c) \(\dfrac{1}{4}\sqrt{84}\) và \(6\sqrt{\dfrac{1}{7}}\)
d) \(3\sqrt{12}\) và \(2\sqrt{16}\)
e) \(\dfrac{1}{2}\sqrt{\dfrac{17}{2}}\) và \(\dfrac{1}{3}\sqrt{19}\)
So sánh : \(\dfrac{\sqrt{5}+1}{5\sqrt{10-2\sqrt{5}}}\) và \(\dfrac{\sqrt{3}}{6}\)
rút gọn :
a)\(\left(\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}+\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
b) \(\sqrt{\dfrac{3\sqrt{3}-4}{2\sqrt{3}+1}}+\sqrt{\dfrac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
c) \(\dfrac{2\sqrt{5}-5\sqrt{2}}{\sqrt{2}-\sqrt{5}}+\dfrac{6}{2-\sqrt{10}}+\sqrt{67+12\sqrt{7}}\)
d) \(\left(\dfrac{\sqrt{5}}{\sqrt{2}+1}+\dfrac{14}{2\sqrt{2}-1}-\dfrac{6}{2-\sqrt{2}}\right).\sqrt{17-12\sqrt{2}}\)
Rút gọn:
A = \(\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)
B = \(\dfrac{3\sqrt{2}+\sqrt{11}}{\sqrt{2}+\sqrt{6+\sqrt{11}}}+\dfrac{3\sqrt{2}-\sqrt{11}}{\sqrt{2}-\sqrt{6-\sqrt{11}}}+18\)
C = \(\dfrac{1}{\sqrt{3}+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+...+\dfrac{1}{\sqrt{2n+1}+\sqrt{2n+3}}\)với n thuộc N*
D = \(\left(\sqrt{3}+1\right)\left(\sqrt{5}-1\right)\left(\sqrt{15}-1\right)\left(7-2\sqrt{3}+\sqrt{5}\right)\)
E=\(\dfrac{\left(4+\sqrt{3}\right)}{\sqrt[]{1}+\sqrt{3}}+\dfrac{\left(8+\sqrt{15}\right)}{\sqrt{3}+\sqrt{5}}+...+\dfrac{2k+\sqrt{k^2-1}}{\sqrt{k-1}+\sqrt{k+1}}+...+\dfrac{240+\sqrt{14399}}{\sqrt{119}+\sqrt{121}}\)
F = \(\left(\dfrac{2a+1}{a\sqrt{a}-1}-\dfrac{\sqrt{a}}{a+\sqrt{a}+1}\right)\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\) với a >= 0 và a khác 1
Tính:
a. \(5\sqrt{2}-2\sqrt{48}+6\sqrt{75}-\sqrt{108}\)
b.\(2\sqrt{147}-\dfrac{3}{32}\sqrt{192}+\dfrac{4}{18}\sqrt{243}-\dfrac{1}{10}\sqrt{300}\)
c. \(-\dfrac{1}{2}\sqrt{108}+\dfrac{1}{15}\sqrt{75}-\dfrac{1}{22}\sqrt{363}+\sqrt{12}\)
d. \(\dfrac{5}{8}\sqrt{48}-\dfrac{1}{33}\sqrt{363}+\dfrac{3}{14}\sqrt{147}-\dfrac{1}{4}\sqrt{192}\)
e. \(\dfrac{3}{2}\sqrt{12}+\dfrac{7}{5}\sqrt{75}-\dfrac{9}{10}\sqrt{300}+\dfrac{11}{6}\sqrt{108}\)
Bài 1 : Rút gọn
a) \(\dfrac{2\sqrt{3}+2}{4\sqrt{3}+4}\) b) \(\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}\) c) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) d) \(\sqrt{9+\sqrt{17}}\). \(\sqrt{9-\sqrt{17}}\)
So sánh A và B biết :
\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{120}+\sqrt{121}}\)
\(B=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{35}}\)
Rút gọn biểu thức :
\((5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}\sqrt{20}-\dfrac{5}{4}\sqrt{\dfrac{4}{5}+\sqrt{5}}):2\sqrt{5}\) và \(\dfrac{1}{3}\sqrt{48}+3\sqrt{75}-\sqrt{27}-10\sqrt{1\dfrac{1}{3}}\)