Bài 12:
a)Có \(H\left(-x\right)=\dfrac{1}{2}\left[f\left(-x\right)+f\left[-\left(-x\right)\right]\right]=\dfrac{1}{2}\left[f\left(-x\right)+f\left(x\right)\right]=H\left(x\right)\)
=>Hàm \(H\left(x\right)\) là hàm chẵn xác định trên S
b)\(G\left(-x\right)=\dfrac{1}{2}\left[f\left(-x\right)-f\left(-\left(-x\right)\right)\right]=\dfrac{1}{2}\left[f\left(-x\right)-f\left(x\right)\right]=-G\left(x\right)\)
=>Hàm \(G\left(x\right)\) là hàm chẵn xác định trên S
Bài 13:
Giải sử pt \(f\left(x\right)=g\left(x\right)\) có nghiệm là a
\(\Rightarrow f\left(a\right)=g\left(a\right)\)
Vì f(x) tăng trên R hay f(x) đồng biến, g(x) giảm trên R hay g(x) là nghịch biến
Tại \(x>a\Rightarrow f\left(x\right)>f\left(a\right)=g\left(a\right)>g\left(x\right)\)
Tại \(x< a\Rightarrow f\left(x\right)< f\left(a\right)=g\left(a\right)< g\left(x\right)\)
\(\Rightarrow\)Với \(x>a;x< a\) thì \(f\left(x\right)=g\left(x\right)\) vô nghiệm
Vậy \(f\left(x\right)=g\left(x\right)\) chỉ có nhiều nhất một nghiệm.