Gọi M' là điểm thuộc tia đối của IA sao cho AI = IM' => AM' là đường kính của (I)
Dễ thấy : \(\begin{cases}BH\text{//}CM'\\CH\text{//}BM'\end{cases}\)=> BHCM' là hình bình hành
=> Hai đường chéo M'H và BC cắt nhau tại trung điểm của mỗi đường mà M là trung điểm của BC => M cũng là trung điểm M'H
=> HM = MM'
Lại có : AI = IM' (cách dựng hình)
=> MI là đường trung bình của tam giác AHM'
=> AH=2IM (đpcm)
Từ (gt) ta có :
\(IM\perp BC\)
\(AH\perp BC\)
=> IM // AH
Lấy G là trọng tâm\(\Delta ABC\) : AG = 2GM
Áp dụng định lí Ta-lét ta có:
\(\frac{\overrightarrow{IM}}{\overrightarrow{AH}}\) =\(\frac{\overrightarrow{GM}}{\overrightarrow{AG}}\)
<=> \(\frac{IM}{AH}\) =\(\frac{GM}{AG}\)
<=> \(\frac{IM}{AH}\) =\(\frac{1}{2}\) (vì AG = 2GM)
<=>AH=2IM
Mình giải thế này các bạn xem có đúng ko