Cho tam giác ABC vuông tại A có đường cao AH.
1) Cho biết AB=3 cm, AC=4 cm. Tính độ dài các đoạn BC,HB,HC,AH
2) Vẽ HE vuông góc với AB tại E, HF vuông góc với AC tại F
a) Chứng minh: AE.EB=HE2
b) Chứng minh: AE.EB+AF.FC=AH2
3) Chứng minh: BE=BC. cos3 B
Cho tam giác ABC vuông tại A có AB = 9cm, AC = 12cm, đường cao AH.
a) Tính BC, góc B, góc C (góc làm tròn đến phút)
b) Tính BH, AH
Gọi E, F là hình chiếu của H lần lượt lên cạnh AB, AC. Chứng minh tam giác ABC đồng dạng AFE
Cho tam giác ABC vuông tại A, đường cao AH (HϵBC)
a) Biết AB = 12cm, BC = 20cm. Tính AC, B, AH (góc làm tròn đến độ)
b) Kẻ HE vuông góc AB (EϵAB). Chứng minh: AE.AB=AC2-HC2
c) Kẻ HF vuông góc AC (FϵAC). Chứng minh: AF=AE.tanC
Cho tam giác ABC vuông tại A , đường cao AH ; biết AB= 9cm ; AC = 12cm . a) Tính BC , AH . b) Tính số đo góc B ( làm tròn đến phút ) c) Gọi M là trung điểm của BC. Đường thẳng vuông góc với BC tại M cắt AC tại D . Chứng minh 2AC.DC = BC2
Cho tam giác ABC vuông tại A có AB bằng 9 cm AC bằng 12 cm đường cao AH Từ H kẻ MH vuông góc với AB M thuộc AB HN vuông góc với AC N thuộc ac tính BC góc B cắt quả góc làm tròn đến phút Tính BH B M N chứng minh nh x AB M nh x AC tính diện tích tam giác amn
Cho tam giác ABC vuông tại C, đường cao CH. Biết AH = 4cm. HB = 9cm
a) Tính CH, CA ?
b) Kẻ HE vuông góc với AC, F vuông góc với BC (E thuộc AC, F thuộc BC) Chứng minh: CE . CA = CF . CB. Từ đó chứng minh: tam giác CEF đồng dạng với tam giác CBA
c) Chứng minh: AB = ACcosA + BCcosB
Cho Tam giác ABC vuông tại A có AB=9 cm, BC=15, đường cao AH
a) Tính AH, CH
b) qua B vẽ đường thẳng vuông góc với BC cắt AC tại D. Tia phân giác của C cắt AB tại N và BD tại M. Chứng minh CN.CD=CM.CB
c) Chứng minh NA.CD=MD.CA
Cho tam giác ABC vuông tại A có góc B = 60 độ, BC = 6cm.
a) Tính AB, AC (độ dài làm tròn đến 1 chữ số thập phân).
b) Kẻ đường cao AH của tam giác ABC. Tính HB, HC.
c) Trên tia đối của tia BA lây điểm D sao cho DB = BC. Chứng minh: \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)
d) Từ A kẻ đường thẳng song song với phân giác của CBD cắt CD tại K. Chứng minh : \(\dfrac{1}{KD.KC}=\dfrac{1}{AC^2}+\dfrac{1}{AD^2}\)
Cho tam giác ABC vuông tại A, có đường cao AH. Vẽ HE vuông góc AB tại E ; vẽ HF vuông góc AC tại F.
Chứng minh: AE.AB=AF.AC
Chứng minh: HB/HC = (AB/AC)2