\(C=70.\left(131313.\left(\dfrac{1}{565656}+\dfrac{1}{727272}+\dfrac{1}{909090}\right)\right)\)
\(C=70.\left(131313.\dfrac{1}{235690}\right)\)
\(C=70.\dfrac{39}{70}\)
\(C=39\)
\(C=70.\left(131313.\left(\dfrac{1}{565656}+\dfrac{1}{727272}+\dfrac{1}{909090}\right)\right)\)
\(C=70.\left(131313.\dfrac{1}{235690}\right)\)
\(C=70.\dfrac{39}{70}\)
\(C=39\)
So sánh:
a) \(A=\dfrac{20132013}{20142014}\) với \(B=\dfrac{131313}{141414}\)
b) \(C=2013^9+2013^{10}\) với \(D=2014^{10}\)
c) So sánh không qua quy đồng:
\(M=\dfrac{-7}{10^{2005}}+\dfrac{-15}{10^{2006}}\) với \(N=\dfrac{-15}{10^{2005}}+\dfrac{-7}{10^{2006}}\)
70*(\(\frac{121212}{565656}\)+\(\frac{121212}{727272}\)+\(\frac{121212}{909090}\))
bài 6: chứng tỏ rằng: \(\frac{-13}{41}=\frac{-1313}{4141}=\frac{-131313}{414141}=\frac{-13131313}{41414141}\)
Tính :
C = \(\left(1+\dfrac{1}{2.3}\right)\) \(\left(1+\dfrac{1}{2.4}\right)\) \(\left(1+\dfrac{1}{3.5}\right)\) .....\(\left(1+\dfrac{1}{2014.2016}\right)\)
1/S=\(\left(1+\dfrac{1}{2}\right)\cdot\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{4}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)\)
2/B=\(\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{2007}\right)\)
3/C=\(\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot...\cdot\dfrac{100^2}{99\cdot101}\)
a) \(\dfrac{\left(3+\dfrac{1}{6}\right)-\dfrac{2}{5}}{\left(5-\dfrac{1}{6}\right)+\dfrac{7}{10}}\)
b) \(\dfrac{\left(4,08-\dfrac{2}{25}\right):\dfrac{4}{17}}{\left(6\dfrac{5}{9}-3\dfrac{1}{4}\right).2\dfrac{2}{7}}\)
c) \(\dfrac{2-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{3}{5}}{3-\dfrac{1}{5}-\dfrac{5}{3}}\)
Tính :
a, \(\dfrac{3\cdot13-13\cdot18}{15\cdot40-80}\);
b, \(\dfrac{18\cdot34+\left(-18\right)\cdot124}{-36\cdot17+9\cdot\left(-52\right)}\);
c, \(\dfrac{\dfrac{3}{41}-\dfrac{12}{47}+\dfrac{27}{53}}{\dfrac{4}{41}-\dfrac{16}{47}+\dfrac{36}{53}}+\dfrac{-0,25\cdot\dfrac{-2}{3}-0,75:\left(\dfrac{-1}{2}+\dfrac{2}{3}\right)}{\left|-1\dfrac{1}{2}\right|\cdot\left(\dfrac{-2}{3}-75\%:\dfrac{3}{-2}\right)}\).
Tính các tích sau:
a) \(P=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot...\cdot\dfrac{99}{100}\)
b) \(Q=\left(\dfrac{1}{9}-1\right)\left(\dfrac{2}{9}-1\right)\left(\dfrac{3}{9}-1\right)...\left(\dfrac{19}{9}-1\right)\)
\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{5}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{7}\right)\left(1-\dfrac{1}{8}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{10}\right)\)