BT1: Tính
a, \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)
b, \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{7}\)
BT2: Rút gọn
\(3x-\sqrt{27}+\frac{\sqrt{x^3+3x^2}}{\sqrt{x+3}}\) ( x ≥ 0 )
bài 1 rút gọn
a \(A=\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
b\(B=\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)
c\(C=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\) d\(D=\sqrt{2+\sqrt{3}}+\sqrt{14-5\sqrt{3}}+\sqrt{2}\)
Bài 1: Rút gọn
a, \(\sqrt{3}\) - \(\frac{1}{3}\sqrt{27}\) + \(2\sqrt{507}\)
b, (\(\sqrt{28}\)-\(\sqrt{12}\) -\(\sqrt{7}\) ) . \(\sqrt{7}\) + \(2\sqrt{21}\)
c, \(2\sqrt{40\sqrt{12}}\) - \(2\sqrt{\sqrt{75}}\) - \(3\sqrt{5\sqrt{48}}\)
Bài 2: Giải phương trình
a , \(5\sqrt{12x}\) - \(4\sqrt{3x}\) + \(2\sqrt{48x}\) = 14
b , \(\sqrt{4x-20}\) + \(\sqrt{x-5}\) - \(\frac{1}{3}\) \(\sqrt{9x-45}\) = 4
MONG CÁC ANH CHỊ GIÚP EM EM CẢM ƠN TRƯỚC ĐỪNG LÀM TẮT EM KHÓ HIỂU
\(\sqrt{3}×\sqrt{27}-\sqrt{144}:\sqrt{36}\)
\(\left(2\sqrt{9}+3\sqrt{36}\right):4\)
\(\sqrt{7}-\sqrt{8-2\sqrt{7}}\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\)
\(\dfrac{5+3\sqrt{5}}{\sqrt{5}}+\dfrac{3+\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5}+3\right)\)
\(\sqrt{27}+5\sqrt{12}-2\sqrt{3}=11\sqrt{3}\)
Tính:
A=\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
B=\(\sqrt{9-4\sqrt{5}}+\sqrt{9+4\sqrt{5}}\)
C=\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
D=\(\sqrt{5\sqrt{3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
E=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)(2 cách)
F=\(\dfrac{\sqrt{17-12\sqrt{2}}}{\sqrt{3-2\sqrt{2}}}-\dfrac{\sqrt{17}+12\sqrt{2}}{\sqrt{3+2\sqrt{2}}}\)
a.\(\sqrt{2}.x-\sqrt{50}=0\)
b.\(\sqrt{3}.x+\sqrt{3}=\sqrt{12}+\sqrt{27}\)
c.\(\sqrt{3}.x^2-\sqrt{12}=0\)
d.\(\dfrac{x^2}{\sqrt{5}}-\sqrt{20}=0\)
Bài 1: Chia hai căn bậc hai:
a) \(\frac{\sqrt{96}+\sqrt{300}-\sqrt{54}}{\sqrt{6}}\)
b) \(\frac{\sqrt{12+8x-x^2-x^3}}{\sqrt{3-x}}\)
Bài 2: Chứng minh rằng khi -3 <x<-1 thì:
\(\sqrt{x^2-x-2}:\sqrt{\frac{x-2}{x^2+4x+3}}=-\left(x+1\right)\sqrt{x+3}\)
Bài 3: Cho biểu thức A = \(\left(1+\frac{x}{\sqrt{x^2-1}}\right):\left(x+\sqrt{x^2-1}\right)\)
a) Rút gọn biểu thức
b) Tính giá trị của A tại x = \(\frac{\sqrt{8-2\sqrt{3}}}{2}\)
Bài 4: Giải phương trình:
a) \(\left(1+\sqrt{5}\right)x+\sqrt{45}=x+\sqrt{320}\)
b) \(6x-3\sqrt{3x-6}=12\)
Giải phương trình sau:
a)\(\sqrt{3}.x-\sqrt{12}=0\)
b)\(\sqrt{2}.x+\sqrt{2}=\sqrt{8}+\sqrt{18}\)
c)\(\sqrt{5}.x^2-\sqrt{20}=0\)
d)\(\sqrt{x^2+6x+9}=3x+6\)
e)\(\sqrt{x^2-4x+4}-2x+5=0\)
f)\(\sqrt{\dfrac{2x-3}{x-1}=2}\)
g) \(\dfrac{\sqrt{2x-3}}{\sqrt{x-1}}=2\\\)
Tính
a) \(\frac{10}{\sqrt{5}}+\frac{8}{3 +\sqrt{5}}-\frac{\sqrt{15}-2\sqrt{5}}{\sqrt{3}-2}\)
b) \(\left(\frac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}-\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{5}-\sqrt{7}}\)