Gọi ƯCLN(3n+1 ; 4n +1 ) là d
\(\begin{cases}3n+1⋮d\\4n+1⋮d\end{cases}\)
=> 4 ( 3n + 1) - 3 ( 4n + 1 ) ⋮ d
=> 1 ⋮ d
=> d = 1
Vậy .......
BT 18:Chứng minh hai số sau là hai số nguyên tố cùng nhau:
1) 3n + 1 và 4n + 1 với n ∈ N
Gọi d là (3n + 1, 4n+1)
=) 3n+1 chia hết cho d
=) 4n+1 chia hết cho d
Vì 3n+1 là số lẻ mà d là ước của 3n+1 =) d là số lẻ
Ta có: 4(3n+1) - 3(4n+1)
= 12n + 4 - 12n+3
= 1
hay d chia hết cho 1 =) d =1 (đpcm)
do đó : (3n + 1, 4n+1) = 1