1. Cho a,b,c > 0. Cmr: a) \(\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ca}+\frac{ab}{c^2+2ab}\le1\)
b) \(\frac{ab^2}{a^2+2b^2+c^2}+\frac{bc^2}{b^2+2c^2+a^2}+\frac{ca^2}{c^2+2a^2+b^2}\le\frac{a+b+c}{4}\)
2. Cho \(x,y,z>0;x+\frac{y}{3}+\frac{z}{5}\ge3;\frac{y}{3}+\frac{z}{5}\ge2;\frac{z}{5}\ge1.MaxP=x^2+y^2+z^2\)
3. Cho \(x>0;y\ge2;2x+y+xy\ge6.MinP=x^3+y^2\)
4. Cho \(0< \alpha< \beta< \gamma\). Giả sử x,y,z > 0 TM \(z\ge\gamma;\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}+\frac{xyz}{\alpha\beta\gamma}=4;\frac{y}{\beta}+\frac{z}{\gamma}+\frac{yz}{\beta\gamma}=3.MinP=x^3+y^3+z^3\)
Cho \(\left\{{}\begin{matrix}\text{x, y, z > 0}\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{4}\end{matrix}\right.\). Tìm \(\min\limits_P=\dfrac{1}{\alpha\text{a}+\beta b+\gamma c}+\dfrac{1}{\beta\text{a}+\gamma b+\alpha c}+\dfrac{1}{\gamma\text{a}+\alpha b+\beta c} v\text{ới} \alpha; \beta;\text{ \gamma}\in\) \(\mathbb{N}^*\)
Cho \(\Delta ABC\) vuông tại A \(\left(AB\ne AC\right)\) . CMR:
\(a,\frac{\sin B-\sin C}{\cos B-\cos C}< 0\)
\(b,\frac{\tan B-\tan C}{\cot B-\cot C}< 0\)
\(c,\cot B+\cot C>2\)
biết cos a=\(\dfrac{20}{29}\). tính sin a, tan a, cot a
a) cotα = 0,6 (0 < α < 90°). Tính 2tanα - 3cotα + sin2α
b) 0 < α < 90°, cos α = 4/5 . Tính 3sinα - 2cotα + tan2α
c) 0 < α < 90° , sin α = 3/5 . Tính tan α - cotα/cos2α
d) 0 < α < 90° , tanα = 2. Tính 4cos2α - 2sinα/cot α
Đơn giản các biểu thức sau:
\(a,\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2\)
\(b,\sin\alpha\cos\alpha\left(\tan\alpha+\cot\alpha\right)\)
1 . Tính tan\(\alpha\) , Cot\(\alpha\) biết :
a) Sin\(\alpha\) = 0,6
b) Cos\(\alpha\) = \(\frac{1}{3}\)
2 . Tính Sin\(\alpha\) , Cos\(\alpha\) biết
a) Tan\(\alpha\) = \(\frac{2}{3}\)
b) Cot\(\alpha\) = \(\frac{3}{5}\)
CÁC BẠN GIÚP MÌNH VỚI !~
chứng minh\(\frac{\sin\alpha}{\cot\alpha}+\cos\alpha=\frac{1}{\cos\alpha}\)
sin a nhân với cos a biết tan a + cot a = 3