0 < α < 90 => cosα > 0
Ta có: sin2α + cos2α = 1 => cosα = \(\frac{3}{5}\)
90 < β < 180 => cosβ < 0
Ta có: sin2β + cos2β = 1 => cosβ = \(\frac{-15}{17}\)
a = cos(α + β) = cosαcosβ - sinαsinβ = \(\frac{-77}{85}\)
0 < α < 90 => cosα > 0
Ta có: sin2α + cos2α = 1 => cosα = \(\frac{3}{5}\)
90 < β < 180 => cosβ < 0
Ta có: sin2β + cos2β = 1 => cosβ = \(\frac{-15}{17}\)
a = cos(α + β) = cosαcosβ - sinαsinβ = \(\frac{-77}{85}\)
Rút gọn biểu thức
\(E = cot(5π+α).cos(α-\dfrac{3π}{2})+cos(α-2π)-2.cos(\dfrac{π}{2}+α)\)\(D = sin(π+α)-cos(\dfrac{π}{2}-α)+cot(4π-α)+tan(\dfrac{5π}{2}-α)\)
Tính cos(α-π/3) biết sinα=3/5 và π/2
Biết tan α=3. Tính giá trị các biểu thức sau:
a)\(\frac{\sin\alpha-\cos\alpha}{\sin\alpha+\cos\alpha}\)
b)\(\frac{2\sin\alpha+3\cos\alpha}{3\sin\alpha-5\cos\alpha}\)
c)\(\frac{1+2\cos^2\alpha}{\sin^2\alpha-\cos^2\alpha}\)
d)\(\frac{\sin^4\alpha+\cos^4\alpha}{1+\sin^2\alpha}\)
a) Tính cho sin α=\(\frac{2}{3}\) và 0∠α∠\(\frac{\pi}{2}\). Tính giá trị của biểu thức A=\(\frac{3\sin\alpha-\sqrt{5}.\cos\alpha}{2.\tan\alpha}\)
a) Cho \(\sin\alpha=-\frac{3}{5}\left(\pi< \alpha< \frac{3\pi}{2}\right)\). Tính tan \(\alpha\)=?
b) Cho \(\alpha=\frac{\sqrt{3}}{3}\left(90^0< \alpha< 180^0\right)\). Tính cot \(\alpha\)=?
Bài 1 : Chứng minh rằng
a) \(\frac{1-sinx}{cosx}=\frac{cosx}{1+sinx}\)
b) \(\frac{tanx}{sinx}-\frac{sinx}{cotx}=cosx\)
Bài 2 : Chứng minh các biểu thức sau độc lập với biến x
A= \(\frac{cot^2x-cos^2x}{cot^2x}+\frac{sinxcosx}{cotx}\)
B= \(cos^4x+sin^2xcos^2x+sin^{2^{ }}x\)
Bài 3 : Tính giá trị các biểu thức lượng giác
A=\(\frac{5cosx+6tanx}{5cosx-6tanx}\) biết tanx=2
B= \(\frac{4sinxcosx-3cos^2x}{^{ }1+3sin^2x}\) biết cotx = -6
Bài 4 : Tính giá trị các biểu thức lượng giác
A= \(\frac{cotx}{cotx-tanx}\) biết sinx=\(\frac{3}{5}\) với \(0^o< x\le90^o\)
B= sina+cosa tana biết cosa=\(\frac{1}{2}\) với \(\frac{3\pi}{2}< a< 2\pi\)
Bài 5 : Tính giá trị lượng giác còn lại của góc 2a nếu :
a) cos2\(\alpha\) = \(\frac{2}{5}\) biết \(0< \alpha< \frac{\pi}{4}\)
b) sin2\(\alpha\) = \(\frac{24}{25}\) biết \(\frac{-3\pi}{4}\le\alpha\le-\frac{\pi}{2}\)
Rút gọn các biểu thức sau :
a) A= 3sin(11\(\pi\) -x) sin(\(\frac{5\pi}{2}-x\)) +2sin(9\(\pi\)+x)
b) B=sin(1980\(^o\)+x)-cos(90\(^o\) -x)+tan(\(270^o-x\)) +cot (360\(^o\) -x)
c) C=-2sin(\(\frac{-5\pi}{2}\)+x)-3cos(3\(\pi\)-x)+5sin(\(\frac{7\pi}{2}\)-x)+cot(\(\frac{3\pi}{2}\)-x)
d) D=tan(x-\(\pi\)) cos (x-\(\frac{\pi}{2}\))cos(x+\(\pi\))
e) E=cos(\(\frac{115\pi}{2}-x\))+sin(\(x-\frac{235\pi}{2}\))+cos(x-\(\frac{187\pi}{2}\))+sin(\(\frac{143\pi}{2}-x\))
f) F= cot(x-\(107\pi\)) cos(x-\(\frac{303\pi}{2}\))+cos(x+1008\(\pi\))-3sin(x-1019\(\pi\))
g) G=cot(19\(\pi\)-x)+cos(x-37\(\pi\))+sin(\(-\frac{31\pi}{2}-x\))+tan(x-\(\frac{47\pi}{2}\))
h) H=cos(1170\(^o\)+x)+2sin(x-540\(^o\))-tan(630\(^o\)+x) cot(810\(^o\)-x)
i) I=\(\frac{sin\left(\pi-x\right)cos\left(x-\frac{9\pi}{2}\right)tan\left(9\pi+x\right)}{cos\left(7\pi-x\right)sin\left(\frac{7\pi}{2}-x\right)cot\left(x-\frac{17\pi}{2}\right)}\)
tính biểu thức y=\(\frac{cos^4a+sin^2a-cos^2a}{sin^4a+cos^2a-sin^2a}\)
cm các đẳng thức:
a) \(\frac{1+\sin^2\alpha}{1-\sin^2\alpha}=1+2\tan^2\alpha\)
b) \(\frac{\cos\alpha}{1+\sin\alpha}+\tan\alpha=\frac{1}{\cos\alpha}\)
c) \(\frac{\sin\alpha}{1+\cos\alpha}+\frac{1+\cos\alpha}{\sin\alpha}=\frac{2}{\sin\alpha}\)