\(A=\dfrac{4sina+5cosa}{2sina-3cosa}=\dfrac{\dfrac{4sina}{sina}+\dfrac{5cosa}{sina}}{\dfrac{2sina}{sina}-\dfrac{3cosa}{sina}}=\dfrac{4+5cota}{2-3cota}=\dfrac{4+5.\left(\dfrac{1}{2}\right)}{2-3.\left(\dfrac{1}{2}\right)}=...\)
\(A=\dfrac{4sina+5cosa}{2sina-3cosa}=\dfrac{\dfrac{4sina}{sina}+\dfrac{5cosa}{sina}}{\dfrac{2sina}{sina}-\dfrac{3cosa}{sina}}=\dfrac{4+5cota}{2-3cota}=\dfrac{4+5.\left(\dfrac{1}{2}\right)}{2-3.\left(\dfrac{1}{2}\right)}=...\)
Câu 1: Trong mặt phẳng Oxy cho \(M(-1;2),N(3;1)\) và đường thẳng \(d: x-y+1=0\). Tìm điểm P thuộc d sao cho tam giác MNP cân tại N.
Câu 2: Cho \(tanx=-2\).Tính giá trị biểu thức \(A=\frac{sin^2 x +3sin xcos x-cos^2 x +1}{3sin^2 x +4sin x cosx +5cos^2 x -2}\).
Câu 3: Tìm m để hàm số \(y=\sqrt{(m+1)^2-2(m+1)x+4}\) có tập xác định D=R
Câu 4: Cho điểm C(-2;5) và đường thẳng \(\Delta=3x-4y+4=0\). Tìm trên \(\Delta\) hai điểm A,B đối xứng với nhau qua \(I(2;\frac{5}{2})\) và diện tích tam giác ABC bằng 15
a) Rút gọn biểu thức
\(A=\dfrac{\sin4x+2\sin2x}{\sin4x-2\sin2x}.\cot\left(\dfrac{3\pi}{2}-x\right)\) (khi biểu thức có nghĩa)
b) Cho \(\cot\alpha=\dfrac{4}{3},3\pi< \alpha< \dfrac{7\pi}{2}\). Tính \(\cos\left(\dfrac{2\pi}{3}-\alpha\right)\)
a) Cho \(\cot\alpha=-3\sqrt{2}\) với ( 90 < a <180 độ). Khi đó giá trị \(\tan\dfrac{\alpha}{2}+\cot\dfrac{\alpha}{2}\) bằng
b) Cho \(\sin x+\cos x=\dfrac{3}{2}\) thì sin 2a bằng
c) Cho \(\sin x+\cos x=\dfrac{1}{2}\) và \(0< x< \dfrac{\pi}{2}\). Tính giá trị sin x
Rút gọn biểu thức: \(A=\frac{\tan^2x-1}{2}\cot x+\cos4x\cot2x+\sin4x\)
a) Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P=3\cos2x+2\cos^2x\). Tính T=19M+5m
b) Viết phương trình chính tắc của elip đi qua điểm A(\(\left(2;\sqrt{3}\right)\) và tỉ số của độ dài trục lớn với tiêu cự bằng \(\dfrac{2}{\sqrt{3}}\)
Trong mặt phẳng tọa độ Oxy cho điểm M(3; 1). Giả sử A(a; 0) và B(0; b) (với a, b là các số thực không âm) là 2 giao điểm sao cho tam giác MAB vuông tại M và có diện tích nhỏ nhất. Tính giá trị biểu thức T = a2 + b2
a) Tính \(sin2a\) biết tan a\(=\dfrac{1}{15}\)
b) Cho \(3sina+4cosa=5\). Tính cos a và sin a
c) Tính \(sin^22a\) biết \(\dfrac{1}{tan^2a}+\dfrac{1}{cot^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)
Cho tam giác ABC vuông tại A, BC=a, CA=b, AB=c. Tìm điểm M sao cho biểu thức \(a^2MA^2+b^2MB^2+c^2MC^2\) đạt giá trị nhỏ nhất
a) Cho tam giác ABC đều. Tính giá trị biểu thức \(P=\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)+\cos\left(\overrightarrow{BC},\overrightarrow{CA}\right)+\cos\left(\overrightarrow{CA},\overrightarrow{AB}\right)\)
b) Cho cung lượng giác có số đo x thỏa mãn tan x =2. Giá trị biểu thức \(A=\dfrac{\sin x-\cos x}{\sin x+\cos x}\)
c) Giá trị biểu thức \(A=\dfrac{\cos\left(750\right)+\sin\left(420\right)}{\sin\left(-330\right)-\cos\left(-390\right)}\)