Do a;b;c là độ dài 3 cạnh của 1 tam giác nên các mẫu số đều dương
Trước hết ta chứng minh BĐT sau với các số dương:
\(\frac{9}{8}\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge\left(x+y+z\right)\left(xy+yz+zx\right)\)
Thật vậy:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\)
\(=\left(x+y+z\right)\left(xy+yz+zx\right)-\frac{1}{9}.3\sqrt[3]{xyz}.3\sqrt[3]{xy.yz.zx}\)
\(\ge\left(x+y+z\right)\left(xy+yz+zx\right)-\frac{1}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)
\(\Rightarrow\frac{9}{8}\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\left(x+y+z\right)\left(xy+yz+zx\right)\) (đpcm)
Quay lại bài toán, đặt \(\left\{{}\begin{matrix}b+c-a=x\\c+a-b=y\\a+b-c=z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{y+z}{2}\\b=\frac{z+x}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\)
BĐT trở thành: \(\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\ge\frac{\left(x+y+z\right)^3}{\frac{9}{8}\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Ta có: \(VT=\frac{\left(y+z\right)^2}{2x\left(y+z\right)}+\frac{\left(z+x\right)^2}{2y\left(z+x\right)}+\frac{\left(x+y\right)^2}{2z\left(x+y\right)}\ge\frac{\left(x+y+z\right)^2}{xy+yz+zx}\) (1)
\(VP=\frac{\left(x+y+z\right)^3}{\frac{9}{8}\left(x+y\right)\left(y+z\right)\left(z+x\right)}\le\frac{\left(x+y+z\right)^3}{\left(x+y+z\right)\left(xy+yz+zx\right)}=\frac{\left(x+y+z\right)^2}{xy+yz+zx}\) (2)
Từ (1) và (2) \(\Rightarrow VT\ge VP\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)