VT=cos3a+cos5a+cosa+cos3a
=2*cos4a*cosa+2*cosa*cos2a
=2*cosa*(cos4a+cos2a)
=2*cosa*2*(cos3a*cosa)
=4*cos3a*cos^2a
=>m=4; n=2
=>m+n=6
VT=cos3a+cos5a+cosa+cos3a
=2*cos4a*cosa+2*cosa*cos2a
=2*cosa*(cos4a+cos2a)
=2*cosa*2*(cos3a*cosa)
=4*cos3a*cos^2a
=>m=4; n=2
=>m+n=6
Giải bài này hộ em đi em giải quài không ra kết quả như đề
Chứng minh: Sina - sin3a - sin5a - sin7a / cosa - cos3a - cos5a - cos7a = - tan2a
c1 : chứng minh \(\left(\frac{1}{cos2x}+1\right)tanx=tan2x\)
c2 : chứng minh \(\frac{cos7a+cos5a+cos3a+cosa}{sin7a+sin5a+sin3a+sina}=cot4a\)
Rút gọn biểu thức sau:
A=4sinx*cosx*cos2x*cos4x
B=cos^4x -6cos^x*sin^2x+sim^4x
C=\(\frac{\text{cos2a-cos4a}}{sin4a+sin2a}\)
D=\(\frac{\text{cosa+cos3a+cos5a}}{sina+sin3a+sin5a}\)
E=sin^2(\(\frac{\pi}{8}\)+\(\frac{x}{2}\))-sin^2(\(\frac{\pi}{8}\)-\(\frac{x}{2}\))
F=\(\frac{1+cosx+cos2x+cos3x}{2cos^2x+cosx-1}\)
Câu 1 : chứng minh rằng : \(\frac{sina+sin2a+sin3a}{cosa+cos2a+cos3a}=tan2a\)
Câu 2 : chứng minh : \(cos^2\left(\alpha-\frac{\pi}{4}\right)-sin^2\left(\alpha-\frac{\pi}{4}\right)=sin2\alpha\)
Chứng minh các hệ thức sau :
a) \(\dfrac{1-2\sin^2a}{1+\sin2a}=\dfrac{1-\tan a}{1+\tan a}\)
b) \(\dfrac{\sin a+\sin3a+\sin5a}{\cos a+\cos3a+\cos5a}=\tan3a\)
c) \(\dfrac{\sin^4a-\cos^4a+\cos^2a}{2\left(1-\cos a\right)}=\cos^2\dfrac{a}{2}\)
d) \(\dfrac{\tan2x.\tan x}{\tan2x-\tan x}=\sin2x\)
cho cosa = 4/5,0<a<n/2. tính giá trị của sin 2a
Nhận dạng tam giác ABC biết:
\(\left\{{}\begin{matrix}sinA=\frac{cosA+cosB}{sinB+sinC}\\2sinBsinC=1+cosA\end{matrix}\right.\)
Chứng minh các đẳng thức sau:
a.\(\frac{1+sin^2x}{1-sin^{2^{ }}x}=1+2tan^2x\)
b.\(\frac{sin^3a-cos^3a}{sina-cosa}-sina.cosa=1\)
c.\(\frac{1+cosx+cos2x+cos3x}{2cos^2x+cosx-1}=2cosx\)
e.\(\frac{1-2sin^2a}{cosa+sina}+\frac{2cos^2a-1}{cosa-sina}=2cosa\)
d.\(\frac{1-cosx+cos2x}{sin2x-sinx}=cotx\)
MỌI NGƯỜI GIÚP MÌNH VỚI .MÌNH CẢM ƠN RẤT NHIỀU
Rút gọn
a) A= \(\frac{4sin^2a}{1-cos^2\frac{a}{2}}\)
b) B= \(\frac{1+cosa-sina
}{1-cosa-sina}\)
c) C= \(\frac{1+sina-2sin^2\left(45-\frac{\pi}{2}\right)}{4cos\frac{a}{2}}\)