Bài 9: Cho hàm số \(y=\dfrac{2mx+4}{\sqrt{x^2+2mx+2018m+2019}}+\sqrt{mx^2+2mx+2020}\). Gọi S là tập hợp các giá trị nguyên của m để hàm số xác định trên R. Hỏi tập S có bao nhiêu phần tử?
Tìm tập xác định của hàm số sau đây :
a. y=\(\dfrac{2x}{x^3-1}\) b.y=f(x)=\(\dfrac{\sqrt{x+2}-\sqrt{2-x}}{x^3+x}\)
Tìm m để hàm số y = \(\frac{x-2m}{(x+m-2)(x+m+1)}\) xác định trên [-1;1)
tìm tập xác định của hàm số
y=\(\dfrac{\sqrt{x-2}}{x+1}\)
Tìm tập xác định của hàm số \(y=\dfrac{x-2}{x\left(x-1\right)}\)
1, Cho hàm số y=\(\sqrt{x-2m+1}\) .Tìm m để hàm số xác định trên (2 ;+∞)
Cho hàm số y=\(\left\{{}\begin{matrix}\dfrac{2x-3}{x-1}khix\ge2\\x^3-3xkhĩ< 2\end{matrix}\right.\) Khẳng định nào sau đây là khẳng định sai?
A.Tập hợp xác định của hàm số là R
B. Tập xác định của hàm số là R\\(\left\{1\right\}\)
C. Giá trị của hàm số tại x=2 bằng 1
D. Giá trị của hàm số tại x=1 bằng -2
xét sự biến thiên của hàm số sau trên tập xác định của nó và lập bảng biến thiên:
a, \(y=-x^2-2x+3\)
b, \(y=\dfrac{x+1}{x-2}\)
Tìm tập xác định của hàm số
y = \(\sqrt{x+8+2\sqrt{x+7}}+\dfrac{1}{1-x}\)
y= \(\sqrt{\sqrt{x^2+2x+2}-\left(x+1\right)}\)