\(\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)
= \(\sqrt{2+3+5+2.\sqrt{2}.\sqrt{3}+2.\sqrt{2}.\sqrt{5}+2.\sqrt{3}.\sqrt{5}}\)
= \(\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}\)
= \(\left|\sqrt{2}+\sqrt{3}+\sqrt{5}\right|\)
= \(\sqrt{2}+\sqrt{3}+\sqrt{5}\) (vì \(\sqrt{2}+\sqrt{3}+\sqrt{5}\) > 0)