Cho tam giác ABC có diện tích 81 cm2. Qua điểm M nằm trong tam giác, vẽ các đường thẳng song song với các cạnh của tam giác, tạo thành 3 hình bình hành và ba tam giác nhỏ. Biết diện tích 2 trong 3 tam giác nhỏ bằng 4 và 16 cm2. Tính diện tích tam giác thứ 3.
1. Trên mặt phẳng cho 2n điểm. Trong đó n điểm được tô màu đỏ và n điểm được tô màu xanh. CMR có ther kẻ được n đoạn thẳng, mỗi đầu mút được tô màu khác nhau và hai đoạn thẳng bất kỳ không có điểm chung,
2. Trên mặt phẳng cho 25 điểm sao cho trong 3 điểm bất kì luôn có 2 điểm cách nhau một khoãng không vượt quá 1. Chúng minh rằng có đường ròn bán kính 1 chứa trong đó ít nhất 13 điểm
3. Cho p là số nguyên tố lớn hơn 3 và n thuộc N*. CMR pn không thể là tổng lập phương của hai số dương
4. Cho 10 điểm phân biệt không có 3 điểm nào thẳng hàng ằm trong một tam giac đều có cạnh bằng 2 cm. CMR luôn tìm được 3 điểm trong 10 điểm đã cho sao cho 3 đỉnh của 3 điểm này tạo thành 1 tam giac có diện tích không vượt quá \(\dfrac{\sqrt{3}}{3}\) cm2 và có một góc nhỏ hơn 45o
1. Cho góc nhọn xOy và điểm m cố định thuộc miền trong của góc. Một đường thẳng di dộng đi qua M luôn cắt 2 cạnh Õ, Oy theo thứ tự A và B. Gọi \(S_1,S_2\)lần lượt là diện tích các tam giác MOA, MOB.
Chmr: \(\frac{1}{S_1}+\frac{1}{S_2}\)có gt k đổi.
2. Bên trong hình vuông có cạnh bằng 1, lấy bất kì 51 điểm phân biệt. Chmr tồn tại ít nhất một tam giác có 3 đỉnh trong số 51 điểm đã cho nằm trong một hình tròn có bán kính là \(\frac{1}{7}\)
Cho 2011 điểm thuộc miền trong của tứ giác.Trong đó, 4 đỉnh cùng với 2011 điểm trên tạo thành 2015 điểm và không có 3 điểm nào cùng thẳng hàng. Biết diện tích tứ giác bằng 1 \(cm^2\).CMR tồn tại 1 tam giác có 3 đỉnh trên có diện tích không vượt quá \(\dfrac{1}{4024}cm^2\)
Cho đường tròn (O) đường kính AB, M là điểm tùy ý thuộc (O) (M không trùng A và B). Trên tia MB lấy điểm N sao cho MA = MN. Vẽ hình vuông AMNP, tia MP cắt (O) tại C. a) Chứng minh C là tâm đường tròn ngoại tiếp tam giác ANB
Một tứ giác lồi có độ dài bốn cạnh đều là số tự nhiên sao cho tổng ba số bất kì trong chúng chia hết cho số còn lại. Chứng minh rằng tứ giác đó có ít nhất hai cạnh bằng nhau.
1. Cho tam giác ABC có đọ dài các đường hân giác trog nhỏ hơn 1.
Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{\sqrt{3}}{3}\)
2. Trên mặt phẳng cho 2012 điểm , khoảng cách giữa chúng đôi một khác nhau. Nối mỗi điểm trong 2012 điểm này với điểm gần nhất.
CMR với cách nối này ta không thể nhận được một đường gấp khúc khép kín
3. Trên mặt phẳng cho 2012 điểm không thẳng hàng.
CMR tồn tại một đường tròn đi qua 3 trong 2012 điểm đã cho mà đường tròn này không chứa bất kì điểm nào trong số những điểm còn lại
4. Trên mặt phẳng cho n điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.
CMR qua mỗi điểm co không quá 5 đoạn thẳng
5. Cho 7 số nguyên dương khác nhau không vượt quá 1706.
CMR tồn tại 3 số a, b, c trong chúng sao cho a<b+c<4a
Cho 2019 điểm trong đó cứ 3 điểm tạo thành một tam giác có diện tích không vượt quá 1.Chứng minh rằng 2019 điểm đó cùng nằm trong tam giác có diện tích nhỏ hơn hoặc bằng 4.