Cho tam giác ABC nhọn nội tiếp đường tròn (O;R). Gọi Q là trung điểm của BC và các đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh : AH = 2OQ
b) Chứng minh rằng nếu : AB + AC = 2BC thì sinB + sin C = 2sin A
c) Cho BC = \(R\sqrt{2}\), chứng minh : AE * FH + AF * HE = \(R^2\sqrt{2}\)
Câu 1: Cho đường tròn (O; R), lấy B \(\in\) (O) gọi H là trung điểm của đoạn OB. Dây CD vuông góc với OB tại H. Tính số đo cung nhỏ và cung lớn CD
Câu 2: Cho tam giác ABC cân tại A. Vẽ (O) đường kính BC. Đường tròn (O) cắt AB và AC lần lượt tại M và N
a) Chứng minh các cung nhỏ BM và CN có số đo bằng nhau
b) Tính \(\widehat{MON}\), biết \(\widehat{BAC}\) = \(40^o\)
Cho tam giác ABC nội tiếp đường tròn tâm O, gọi E,D lần lượt là giao điểm của các tia phân giác trong và ngoài của 2 góc B và C. Đường thẳng ED cắt BC tại I, cắt cung nhỏ BC ở M chứng minh
a) ba điểm AED thẳng hàng
b) chứng minh tứ giác BECD nội tiếp
c) Tìm 2 cặp tam giác đồng dạng
Help!! mời các cao nhân vào giúp
Cho đường tròn tâm O , bán Kính R . Dây BC < 2R cố định . Điểm A chạy trên cung lớn BC sao cho tam giác ABC nhọn . Kẻ 3 đường cao AD , BE , CF cắt nhau tại H . Chứng minh : a) AEFH nội tiếp . Xác định tâm I của đường tròn ngoại tiếp .
b) Chứng minh khi A chạy trên cung BC lớn thì tiếp tuyến tại E của đường tròn tâm I luôn đi qua 1 điểm cố định
c,Tìm vị trí A thuộc cung lớn BC để diện tích tam giác AEF lớn nhất.
1.Cho nửa đường tròn (O) có đường kính BC và dây cung EF sao cho các điểm F,C nằm khác phía so với đường thẳng BE. Hai dây cung BE,CF cắt nhau tại điểm H; tia BF và CE cắt nhau tại A. Đường thẳng AH cắt đường thẳng BC tại D. Chứng minh 2. Cho đường tròn (O) và một điểm A nằm ngoài đường tròn. Kẻ hai tiếp tuyến AB và AC với đường tròn (O) . Trên đoạn OB lấy điểm (I khác B, I khác O). Đường thẳng AI cắt đường tròn (O) tại điểm D và E( D nằm giữa A và E). Chứng minh =AD.AE
cho tam giác ABC nhọn có AB<AC nội tiếp đường tròn tâm O , bán kính R . gọi H là giao điểm của 3 đường cao AD,BE,CF của tam giác ABC . kẻ đường kính AK của đường tròn (O) , AD cắt (O) tại điểm N
1. chứng minh AEDB , AEHF là tứ giác nội tiếp và AB.AC=2R.AD
2. chứng minh HK đi qua tring điểm M của BC
3. gọi bán kính đường tròn ngoại tiếp tứ giác AEHF là r . chứng minh OM^2=R^2-r^2
4. chứng minh OC vuông góc với DE và N đối xứng với H qua đường thẳng BC
cho tam giác ABC vuông tại A đường cao AH. Đường tròn tâm E đường kính BH cắt AB tại M( M khác B), đường trong tâm F đường kính HC cắt AC tại N(N khác C)
a)Chứng minh AM.AB=AN.AC và AN.AC=MN2
b)Gọi I là trung điểm của EF, O là giao điểm của AH và MN. Chứng minh IO vuông góc với đường thẳng MN
c)Chứng minh 4(EN2+FM2)=BC2+6AH2
cho đường tròn (O;R) và dây Bc cố định (BC<2R), BF là đường kính. A là điểm di chuyển trên cung lớn BC (A khác B,C) sao cho tam giác ABC có ba góc nhọn. các đường cao AD và CE của tam giác ABC cắt nhau tại H
1, chứng minh tứ giác AEDC là tứ giác nội tiếp
2, chứng minh HF đi qua trung điểm G của doạn thẳng AC
3, chứng minh \(\frac{A}{sinDEC}\) không đổi