Cắt hình nón đỉnh S bởi mặt phẳng đi qua trục ta được một tam giác vuông cân có cạnh huyền bằng \(a\sqrt{2}\)
a) Tính diện tích xung quanh, diện tích đáy và thể tích của khối nón tương ứng
b) Cho dây cung BC của đường tròn đáy hình nón sao cho mặt phẳng (SBC) tạo với mặt phẳng chứa đáy hình nón một góc \(60^0\). Tính diện tích tam giác SBC ?
Cho hình trụ bán kính r và có chiều cao cũng bằng r. Một hình vuông ABCD có hai cạnh AB và CD lần lượt là các dây cung của hai đường tròn đáy, còn cạnh BC và AD không phải là đường sin của hình trụ. Tính diện tích của hình vuông đó và côsin của góc giữa mặt phẳng chứa hình vuông và mặt phẳng đáy ?
Một khối trụ có bán kính đáy bằng r và chiều cao bằng \(r\sqrt{3}\).
Gọi A và B là hai điểm trên hai đường tròn đáy sao cho góc được tạo thành giữa đường thẳng AB và trục của khối trụ bằng \(30^0\)
a) Tính diện tích của thiết diện qua AB và song song với trục của khối trụ
b) Tính góc giữa hai bán kính đáy qua A và B
c) Xác định và tính độ dài đoạn vuông góc chung của AB và trục của khối trụ
Hình chóp tam giác đều S.ABC có SA = SB = SB = a và có góc giữa hai mặt bên và mặt phẳng đáy \(\left(\alpha\right)\). Tính diện tích xung quanh của hình trụ có đường tròn đáy là đường tròn nội tiếp tam giác đáy của hình chóp và có chiều cao bằng chiều cao của hình chóp. Các mặt bên SAB, SBC, SCA cắt hình trụ theo những giao tuyến như thế nào ?
Một hình nón tròn xoay có thiết diện qua trục là một tam giác vuông cân có cạnh bằng a.
a) Tính diện tích toàn phần và thể tích của hình nón đó ?
b) Một mặt phẳng đi qua đỉnh tạo với mặt phẳng đáy một góc \(60^0\). Tính diện tích thiết diện được tạo nên ?
Một hình trụ có các đáy là hai hình tròn tâm O và O' bán kính r và có đường cao \(h=r\sqrt{2}\). Gọi A là một điểm trên đường tròn tâm O và B là một điểm trên đường tròn tâm O' sao cho OA vuông góc với O'B
a) Chứng minh rằng các mặt bên của tứ diện OABO' là những tam giác vuông. Tính thể tích của tứ diện này ?
b) Gọi \(\left(\alpha\right)\) là mặt phẳng qua AB và song song với OO'. Tính khoảng cách giữa trục OO' và mặt phẳng \(\left(\alpha\right)\)
c) Chứng minh rằng \(\left(\alpha\right)\) tiếp xúc với mặt trục OO' có bán kính bằng \(\dfrac{r\sqrt{2}}{2}\) dọc theo một đường sinh
Một hình trụ có bán kính r và chiều cao \(h=r\sqrt{3}\)
a) Tính diện tích xung quanh và diện tích toàn phần của hình trụ
b) Tính thể tích khối trụ tạo nên bởi hình trụ đã cho
c) Cho hai điểm A và B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa đường thẳng AB và trục của hình trụ bằng \(30^0\). Tính khoảng cách giữa đường thẳng AB và trục của hình trụ ?
Một hình trụ có bán kính đáy \(r=5cm\) và có khoảng cách giữa hai đáy bằng 7cm.
a) Tính diện tích xung quanh của hình trụ và thể tích của khối trụ được tạo nên
b) Cắt khối trụ bởi một mặt phẳn song song với trục và cách trục 3cm. Hãy tính diện tích của thiết diện được tạo nên
Cho mặt phẳng (P). Gọi A là một điểm nằm trên (P) và B là một điểm nằm ngoài (P) sao cho hình chiếu H của B trên (P) không trùng với A. Một điểm M chạy trên mặt phẳng (P) sao cho góc \(\widehat{ABM}=\widehat{BMH}\)
Chứng minh rằng điểm M luôn luôn nằm trên một mặt trụ tròn xoay có trục là AB ?