a: Xét ΔEMB vuông tại E và ΔFMC vuông tại F có
MB=MC
\(\widehat{EMB}=\widehat{FMC}\)
Do đó: ΔEMB=ΔFMC
Suy ra: BE=CF
b: Xét tứ giác BECF có
BE//CF
BE=CF
Do đó; BECF là hình bình hành
Suy ra: BF//CE
a: Xét ΔEMB vuông tại E và ΔFMC vuông tại F có
MB=MC
\(\widehat{EMB}=\widehat{FMC}\)
Do đó: ΔEMB=ΔFMC
Suy ra: BE=CF
b: Xét tứ giác BECF có
BE//CF
BE=CF
Do đó; BECF là hình bình hành
Suy ra: BF//CE
cho tam giác ABC cân tại A, Kẻ BE vuông góc với AC tại E và CF vuông góc với AB tại F . Chứng minh tam giác BFC= tam giác CEB . Gọi D là trung điểm của BC. Chứng minh tam giác BFD = tam giác CED và suy ra tam giác DEF cân. Cho biết AC=10(cm);BE=8(cm). Tính độ dài AE và EC. Cho góc A=40 độ . Tính góc AFE
ChoABC có AB < AC. Vẽ tia Ax đi qua trung điểm M của BC. Kẻ BE và CF vuông góc với Ax (E và F Ax)
a) Chứng minh BME = CMF b) So sánh BF và CE
cho tam giác abc (ab khác ac) tia bx đi qua trung điểm M của AC. kẻ AB và CF vuông góc với Bx( E và F thuộc Bx)
a. Chứng minh: tam giác AME= tam giác CMF
b.chứng minh AF//CE
c.gọi P và Q lần lượt là trung điểm của AF và CE. Chứng minh P,M,Q thẳng hàng
Cho tam giác ABC có AB<AC. O là trung điểm BC. Kẻ BE và CF cũng vuông góc với đường thẳng OA(E,F thuộc đường thẳng OA)
a,CM: OE=OF b,CM:BF//CE
c, Lấy điểm M nằm giữa B và F, N nằm giữa C và E sao cho : BM=CN. CMR: O là trung điểm của MN
Mọi người giải giùm với ạ
cho tam giác ABC có góc B = 90 độ , vẽ trung tuyến AM . trên tia đối của tia MA lấy điểm E sao cho ME=MA .chứng minh
a) tam giác ABM= tam giác ECM
b) BE song song với AC
c)gọi N là trung điểm của CE . BN cắt CE tại G. biết AB=30cm,BC=4cm. tính BG
mọi người giải bài toán này giúp mình ạ
Cho tam giác ABC cân tại A , kẻ AH vuông góc BC ( H thuộc BC)
a, Chứng minh : HB=HC
b, Trên tia đối của tia BC lấy điểm M , trên tia đối CB lấy điểm N , sao cho BM=CN . Kẻ BE vuông góc vs AM tại e, kẻ CF vuông góc AN tại F . Gọi I là giao điểm của EB và FC . Chứng minh A,H,I thẳng hàng
Cho Δ ABC cân tại A. Vẽ các tia phân giác BE, CF của góc B và góc C ( E∈ AC, F ∈ AB )
a, C/m BE = CF
b, Gọi D là giao điểm của BE và CF. C/m AD là tia phân giác của góc BAC và c/m AD ⊥ BC
c, Kẻ DM ⊥ AB, DN ⊥ AC, DK ⊥ BC. C/m DM = DN = DK
M.n giúp em với
Cho tam giác ABC cân tại A. trên cạnh AB AC lấy 2 điểm E,F sao chi AE=AF gọi O là giao điểm của BE và CF CM: a,BF=CE b,tam giác DBC cân c,AO là đường trung tuyến của EF
Câu 3(). Cho tam giác ABC cân tại A. Lấy điểm E thuộc cạnh BC, điểm F thuộc tia đối của tia CB sao cho BE = CF Qua E kẻ đường thẳng vuông góc với BC cắt cạn AB tại M. Qua F kẻ đường thẳng vuông góc với BC cắt cạnh AC kéo dài tại N. A) Cho BM = 10cm BE=6cm. Tính EM. B) Cho góc ACB =40^ So sánh các cạnh của tam giác ABC. C)Chứng minh: EM=FN. F)Vẽ đường thẳng qua A và song song EM và cắt BC tại I. Vẽ đường thẳng Bx vi óc với AB tại B, đường thẳng Cy vuông góc với AC tại C. Chứng minh ba đường thẳng Bx, AI, Cy cùng đi qua 1 điểm D)Gọi H là giao điểm của BC và MN. Chứng minh H là trung điểm của EF. E)Chứng minh: CM > CN