a)Xét ∆AHB và ∆ CKD có:
HB = KD (= 1 ô)
AHBˆ = CKDˆ
AH = CK (= 3 ô)
=> ∆AHB = ∆CKD(c.g.c)
=> AB = CD (cạnh tương ứng)
Chứng minh tương tự ta đươc: ∆ CEB = ∆ AFD (c.g.c)
suy ra BC=AD.
b) Xét ∆ABD và ∆CDB có:
AB = CD (cmt)
BC = AD (cmt)
BD chung.
=> ∆ABD = ∆CDB (c.c .c)
=> ABDˆ = CDBˆ
Mà hai góc này ở vị trí so le trong
Vậy AB // CD (đpcm)