Cho đường tròn tâm O và dây cung BC. Điểm A di chuyển trên cung lớn BC sao cho tam giác ABC có 3 góc nhọn. Đường cao BE, CF của tam giác ABC cắt nhau tại H và cắt đường tròn theo thứ tự tại M và N. Cho cung BC nhỏ có số đo bằng 120 độ. Tính tỉ số diện tích của tam giác AEF và tứ giác BCEF
Cho đường tròn tâm O có hai đường kính là AB và CD vuông góc với nhau tại O. Trên cung nhỏ BC lấy điểm M, AM cắt CD tại I. Tiếp tuyến của O tại M cắt tia AB tại N. Chứng minh rằng: AC là tiếp tuyến của đường tròn ngoại tiếp tam giác CMI.
Bài 1: Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn (O;R); các đường cao BE,CF cắt nhau tại H. Đường thẳng EF cắt đường tròn ngoại tiếp tam giác ABC tại M,N ( M nằm trên cung nhỏ AB)
1) Chứng minh tam giác AMN can
2) Giả sử AH cắt BC tại D. Chứng minh rằng: \(AM^2=AH.AD\)
3) Gọi P là điểm đối xứng với A qua O. Đường thẳng PN cắt đường thẳng BC tại K. Chứng minh rằng AK vuông góc với HN.
Bài 2: Cho đường tròn tâm O đường kính AB và P là một điểm di động trên đường tròn ( P khác A) sao cho \(PA\le PB\).Trên tia đối PB lấy điểm Q sao cho PQ=PA, dựng hình vuông APQR. Tia PR cắt đường tròn đã cho ở điểm C ( C khác P)
1) Chứng minh C là tâm đường tròn ngoại tiếp tam giác AQB
2) Gọi K là tâm đường tròn nội tiếp tam giác APB, Chứng minh K thuộc đường tròn ngoại tiếp tam giác AQB
3) Kẻ đường cao PH của tam giác APB, gọi \(R_1,R_2,R_3\)lần lượt là bán kính các đường tròn ngoại tiếp tam giác APB, tam giác APH và tam giác BPH.Tìm vị trí điểm P để tổng \(R_1+R_2+R_3\)đạt giá trị lớn nhất
1. Cho đường tròn
(O;3cm) và điểm A thỏa mãn OA=5cm. Kẻ các tiếp tuyến AB,AC với đường tròn. Gọi H là giao điểm của AO với BC.
a) Tính OH.
b) Qua điểm M bất kỳ thuộc cung nhỏ BC kẻ tiếp tuyến với (O) cắt AB,AC theo thứ tự tại D và E. Tính chu vi tam giác ADE.
Cho đường tròn (O), cung AB có số đo 100o. Vẽ đường kính AOC. Tính số đo góc ở tâm AOB và số đo cung nhỏ BC.
Cho đường tròn (O) đường kính AB, cung CB có số đo bằng 450, M là một điểm trên cung nhỏ AC. Gọi N ; P là các điểm đối xứng với M theo thứ tự qua các đường thẳng AB ; OC . Số đo cung nhỏ NP là:
Cho đường tròn (O; R) có đường kính BC. Trên đường tròn (O) lấy điểm A sao
cho AC = R.
a) Tính góc AOC và số đo mỗi cung AC.
b) Tính số đo cung nhỏ AB.
cho tam giác ABC (AC<BC) nội tiếp đg tròn tâm O đg kính AB. kẻ CH vuông góc với AB(H thuộc AB). trên cung nhỏ BC lấy điểm E bất kì, gọi giao điểm của AE với CH là F
1, chứng minh tứ giác HFEB nội tiếp đg tròn
2, chứng minh AC2 = AE.AF
3, gọi I là giao điểm của BC với AE,K là hình chiếu vuông góc của I trên AB tìm vị trí điểm E trên cung nhỉ BC để KE + KC đạt giá trị lớn nhất
Bài 4: Cho đường tròn (O;R), vẽ hai dây AB, CD nằm về 2 phía điểm O và song
song với nhau (theo thứ tự A, B, C, D trên đường tròn). Cho biết sđ ̂AB = 60 ,sđ ̂ CD= 120 . Tính số đo hai cung nhỏ BC và AD.
Bài 5: Cho đường tròn (O;R). Một điểm A cách O bằng 2R, OA cắt (O) tại B, kẻ tiếp tuyến AM với (O). Số đo cung nhỏ BM bằng bao nhiêu?
Bài 6: Cho tam giác ABC có ̂A= 60 , nội tiếp đường tròn (O;R). Tính BC theo R.