Tự vẽ hình :)
1) Xét \(\Delta ABD;\Delta ACD:\)
\(AB=AC\left(gt\right)\)
\(\widehat{BAD}=\widehat{CAD}\) (At là pg)
AD chung
\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
\(\Rightarrow\widehat{ABC}=\widehat{ACB}.\)
b) Theo câu a) \(\Rightarrow\widehat{ADB}=\widehat{ADC}\)
mà \(\widehat{ADB}+\widehat{ADC}=180^o\left(kb\right)\)
\(\Rightarrow\widehat{ADB}=\widehat{ADC}=\dfrac{180^o}{2}=90^o\).
a/
Xét \(\Delta ABD\) và \(\Delta ACD\) có
\(\widehat{A1}=\widehat{A2}\)(At là phân giác)
AB=AC
AD là cạnh chung
Nên \(\Delta ABD=\Delta ACD\left(c-g-c\right)\)
Vậy \(\widehat{ABC}=\widehat{ACB}\)(hai góc tương ứng)
b/
Ta có \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABD}=\widehat{ACD}\)
Mà hai góc này ở vị trí kề bù
\(\Rightarrow\widehat{ABD}+\widehat{ACD}=180^0\)
\(\Rightarrow2\widehat{ABD}=2\widehat{ACD}=180^0\)
\(\Rightarrow\widehat{ABD}=\widehat{ACD}=90^0\)
Vậy \(\widehat{ABD}=\widehat{ACD}=90^0\)