`@TXĐ: RR`
`@y=2cos^2 (x+\pi/4)-cos 2x`
`y=2cos^2 (x+\pi/4)-1+1-cos 2x`
`y=cos(2x+\pi/2)+1-cos 2x`
`y=-sin 2x-cos 2x+1`
`y=-\sqrt{2}(1/\sqrt{2}sin 2x+1/\sqrt{2}cos 2x)+1`
`y=-\sqrt{2}sin(2x+\pi/4)+1`
Có: `-1 <= sin (2x+\pi/4) <= 1 AA x in RR`
`<=>\sqrt{2} >= -\sqrt{2}sin(2x+\pi/4) >= -\sqrt{2}`
`<=>\sqrt{2}+1 >= y >= -\sqrt{2}+1`
`=>y_[max]=\sqrt{2}+1<=>sin(2x+\pi/4)=-1<=>2x+\pi/4=-\pi/2+k2\pi`
`<=>x=[-3\pi]/8+k\pi` `(k in ZZ)`