Bài 6: Cho tam giác ABC vuông tại A, AB = 4cm, AC = 3 cm, trung tuyến AD, kẻ DK vuông góc với với AB, kẻ DH vuông góc với AC
a. Tứ giác AKDH là hình gì? Vì sao?
b. Tính độ dài AD
c. Tính diện tích tam giác ABD
Bài 7: Cho ABC vuông ở A (AB < AC ), đường cao AH. Gọi D là điểm đối xứng của A qua H. Đường thẳng kẻ qua D song song với AB cắt BC và AC lần lượt ở M và N. Chứng minh:
a. Tứ giác ABDM là hình thoi.
b. AM CD .
c. Gọi I là trung điểm của MC; chứng minh IN HN.
Hai cạnh của một hình bình hành có độ dài là 6cm và 4cm. Một trong các đường cao có độ dài là 5cm. Tính độ dài đường kia ?
Cho hình bình hành ABCD có CD=4cm, đường cao vẽ từ AH đến cạnh CD bằng 3cm.
a, Tính diện tích nình bình hành ABCD.
b, Gọi M là trung điểm của AB. Tính diện tích △ADM.
c, DM cắt AC tại N. Chứng minh DN=2NM.
d, Tính diện tích △AMN.
1. Cho tam giác ABC có diện tích bằng 24cm2, đường cao AH bằng 6 cm. Tính BC
2. Cho tam giác ABC vuông cân tại A (AD là phân giác CD thuộc BC), E là điểm đối xứng với D qua AC. Tứ giác AECD là hình gì?
3. Cho tam giác nhọn ABC, các đường cao BH và CK. Gọi E và F lần lượt là hình chiếu của B và C trên HK. Chứng minh rằng EK = HF
Bài 2: Cho hình bình hành ABCD có CD = 16 cm, đường cao vẽ từ A đến cạnh CD bằng 12 cm. \
a,Tính diện tích hình bình hành ABCD.
b,Gọi M là trung điểm AB, Tính diện tích tam giác ADM.
c,DM cắt AC tại N. Chứng minh rằng DN= 2NM
d, Tính diện tích tam giác AMN.
cho tam giác DEF cân tại D có đường cao DH gọi M là trung điểm của D và N là điểm đối xứng của H qua m A. biết DH = 4 cm BC = 14 cm tính diện tích tam giác DHE. B tứ giác DHFN là hình gì ? vì sao?
Cho hình bình hành ABCD, hai đường chéo AC và BD cắt nhau tại O. Xét các tam giác có đỉnh lấy trong số các điểm A, B, C, D, O. Hãy chỉ ra các tam giác có diện tích bằng nhau và giải thích vì sao ?