Cho tam giác ABC, 3 đường phân giác AM, BN, CP cắt nhau tại O. 3 cạnh AB, BC, CA tỉ lệ với 4,7,5
a) Tính MC, biết BC = 18cm.
b) Tính AC, biết NC - NA = 3cm
c) Tính tỉ số \(\dfrac{OP}{OC}\)
d) CM: \(\dfrac{MB}{MC}\).\(\dfrac{NC}{NA}\).\(\dfrac{PA}{PB}\)=1 và \(\dfrac{1}{AM}\)+\(\dfrac{1}{BN}\)+\(\dfrac{1}{CP}\)> \(\dfrac{1}{BC}\)+\(\dfrac{1}{CA}\)+\(\dfrac{1}{AB}\)
Cho tam giác ABC, M thuộc BC, N thuộc AC sao cho BM/MC=2/3 ; CN/NA=3/5 , AM cắt BN tại O.
a) Tính tỉ số AO/AM
b) Lấy điểm P trên AB sao cho PB/BA=2/7 . Chứng minh: AM, BN, CP đồng quy
Cho tam giác ABC, M thuộc BC, N thuộc AC sao cho \(\dfrac{BM}{MC}=\dfrac{2}{3};\dfrac{CN}{NA}=\dfrac{3}{5}\), AM cắt BN tại O.
a) Tính tỉ số \(\dfrac{AO}{AM}\)
b) Lấy điểm P trên AB sao cho \(\dfrac{PB}{BA}=\dfrac{2}{7}\). Chứng minh: AM, BN, CP đồng quy
Cho tam giác ABC và 3 đường phân giác AM, BN, CP cắt nhau tại I. CM:
a) \(\dfrac{MB}{MC}.\dfrac{NC}{NA}.\dfrac{PA}{PB}=1\)
b) \(\dfrac{MI}{MA}+\dfrac{NI}{NB}+\dfrac{PI}{PC}=1\)
Cho tam giác ABC, 3 đường phân giác AM, BN, CP cắt nhau tại O. 3 cạnh AB, BC, CA tỉ lệ với 4,7,5
a) Tính MC, biết BC = 18cm.
b) Tính AC, biết NC - NA = 3cm
c) Tính tỉ số OP/OC
d) CM: NC/NA.1/AM+1/CP> 1/CA+
Cho tam giác ABC. Trên các cạnh BC, CA, AB lấy lần lượt các điểm M, N, P sao cho AM, BN, CP đồng qui tại O. Qua A và C vẽ các đường thẳng song song với BO cắt CO, OA lần lượt tại E và F
a) Tam giác FCM đồng dạng tam giác OMB. Tam giác PAE đồng dạng tam giác PBO
b) \(\frac{MB}{MC}.\frac{NC}{NA}.\frac{PA}{PB}=1\)
Cho tam giác ABC, 3 đường phân giác AM, BN, CP cắt nhau tại O. 3 cạnh AB, BC, CA tỉ lệ với 4,7,5
a) Tính MC, biết BC = 18cm.
b) Tính AC, biết NC - NA = 3cm
c) Tính tỉ số MB/MC.PA/PB=1 và 1/BN+1/BC+1/AB
Cho tam giác ABC, M thuộc AC sao cho AM=MC=1/3. Lấy điểm O trên BM sao cho OM/OB=2/3. Nối A với O cắt BC tại N.
a) Tính các tỉ số CN/NB và AO/ON.
b) Xác định vị trí của điểm P trên AB sao cho BM, AN, CP đồng quy
Cho tam giác ABC, M thuộc AC sao cho AM=MC=1/3. Lấy điểm O trên BM sao cho OM/OB=2/3. Nối A với O cắt BC tại N.
a) Tính các tỉ số CN/NB và AO/ON.
b) Xác định vị trí của điểm P trên AB sao cho BM, AN, CP đồng quy