ΔABC cân tại A
mà AM là phân giác
nên AM vuông góc BC
=>a//BC
ΔABC cân tại A
mà AM là phân giác
nên AM vuông góc BC
=>a//BC
Cho tam giác ABC có AB =AC, M là trung điểm của BC a) Chứng minh AM là tia phân giác của góc BAC b) AM vuông góc với BC c) Từ C kẻ đường thẳng song song với AB, cắt AM tại D. Chứng minh tam giác ADC cân
Đề bài: Cho △ABC cân tại A. Tia phân giác góc BAC cắt cạnh BC tại M.
a) Chứng minh: △AMB = △AMC
b) Kẻ ME vuông góc AB ( E ϵ AB ), MF vuông góc AC ( F ϵ AC ). Chứng minh △AEF cân
c) Chứng minh: AM vuông góc EF
d) Qua B kẻ đường thẳng song song với AC cắt đường thẳng FM tại I. Chứng minh: BE = BI
Cho tam giác ABC cân tại A (góc A< 90 độ). Vẽ tia phân giác CD của góc C (D thuộc AB). Qua D vẽ DF vuông góc với D (F thuộc AC). Vẽ DE song song với BC (E thuộc AC). Gọi I là giao điểm của tia phân giác của góc BAC với DE. a)CM: E là trung điểm của FC. b) CM: FC=4IC
cho tam giac ABC vuông tại A, có AH là đường cao và AM là tia phân giác của HAC, kẻ MK vuông góc với AC tại K
Chứng minh : AH=AK và BA=BM
Gọi I là giao điểm của đường thẳng MK và AH, chứng minh AM vuông góc CI và KH song song CI
Bài 4 (3 điểm): Cho tam giác ABM vuông tại A (AB < AM). Trên cạnh BM lấy điểm E sao cho BE = BA. Kẻ BD là tia phân giác của góc ABM (D thuộc AM) a) Chứng minh AABD = AEBD b) Cho AB = 3cm, AM = 4cm. Tinh độ dài cạnh BM. c) Qua E kẻ đường thẳng song song với AM cắt BD tại H. Chứng minh HD là tia phân giác của góc AHE. d) Kẻ HI 1 BM tại I. Chứng minh rằng 3 điểm A, H, I thẳng hàng
Cho tam giác ABC, có AB=AC,. Kẻ phân giác CD( D thuộc AB). Qua D vẽ đường thẳng song song CD cắt BC tại F và cắt CA tại K Đường thẳng kẻ qua ND và song song với BC cắt AC tại F. Phân giác cửa góc BAC cắt DE tại M.
a) Chứng minh: tam giác CDF bằng tam giác CDK bằng nhau.
B)Các tam giác DEC và tam giác DEK là tam giác cân
c) CF=2BD d) MD = 1/4 CF.
Cho tam giác ABC vuông tại A . Tia phân giác của góc B và C cắt nhau tại O . Qua O kẻ một đường thẳng song song với BC cắt AB tại D , AC tại E .
a,Tính góc BOC không đổi
b,DE = DB + EC