Tìm x, y, z biết
a/ x : y : z = 2 : 3 : (-4)
và x - y + z = -125
b/ \(\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{6}\)
và 3x - 2y + z = 4
c/ \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
và x + y + z =147
d/ \(2x=3y;5y=7z\)
và 3x - 7y + 5z = 30
Cho 3 số thực dương x,y,z thỏa mãn \(x+y+z=3\) Tìm giá trị nhỏ nhất của
\(P=\dfrac{\left(2x+3y+z\right)^3}{3\sqrt[3]{z^2x^2}+1}+\dfrac{\left(2y+3z+x\right)^3}{3\sqrt[3]{x^2y^2}+1}+\dfrac{\left(2z+3x+y\right)^3}{3\sqrt[3]{y^2z^2}+1}\)
Tìn x, y biết
a/ \(\frac{x}{3}=\frac{y}{4}\) và 2x - 3y = -216
b/ \(\frac{x}{2}=\frac{y}{7}\) và x . y =126
Bài 1: Giải bất phương trình
\(\dfrac{|x+2|-|x|}{\sqrt{4-(x)^{3}}}>0\)
\(\dfrac{3}{|x+3|-1}>|x+2|\)
\(\dfrac{9}{|x-5|-3}>|x-2|\)
Bài 2: Tùy thuộc vào giá trị m hãy xác định số nghiệm của phương trình
\(|x^{2}-2x-3|=m\)
Cho x,y>=0. Thoả mãn 2/x+3/y=6. Tìm giá trị nhỏ nhất của x+y
Cho 3 số thực dương x,y,z thỏa mãn \(x^2+y^2+z^2\le3\) Tìm giá trị lớn nhất
\(H=\dfrac{y}{x^2+2y+3}+\dfrac{z}{y^2+2z+3}+\dfrac{x}{z^2+2x+3}\)
Cho \(x,y>0;x,y=4\). Tìm giá trị nhỏ nhất của \(A=x+y+x\sqrt{9+y^2}+y\sqrt{9+x^2}\)
Biểu diễn hình học miền nghiệm của bất phương trình, hệ bất phương trình sau
1) 3x − y + 1 > 0 2) 2(x − 1) + y − 2 ≤ x − 3y + 1
Một xí nghiệp sản xuất hai loại sản phẩm kí hiệu là I và II. Một tấn sản phẩm loại I lãi 2 triệu đồng, một tấn sản phẩm loại Ii lãi 1,6 triệu đồng. Muốn sản xuất 1 tấn sản phẩm loại I phải dùng máy M1 trong 3 giờ và máy M2 trong 1 giờ. Muốn sản xuất 1 tấn sản phẩm loại II phải dùng máy M1 trong 1 giờ và máy M2 trong 1 giờ. Biết rằng một máy không thể sản xuất đồng thời hai loại sản phẩm; máy M1 làm việc không quá 6 giờ trong một ngày, máy M2 một ngày chỉ làm việc không quá 4 giờ.
Hãy đặt kế hoạch sản xuất của xí nghiệp sao cho tổng số tiền lãi cao nhất.
A) một ngày sản xuất 1 tấn sản phẩm loại I và 3 tấn sản phẩm loại II.
B) một ngày sản xuất 1 tấn sản phẩm loại II và 3 tấn sản phẩm loại I.
C) một ngày sản xuất 2 tấn sản phẩm loại I và 2 tấn sản phẩm loại II.
D) một ngày sản xuất 3 tấn sản phẩm loại II.